Physiological Responses and Cold Resistance of Four Varieties of Crassulaceae under Low-temp Stress
-
摘要:
目的 研究低温胁迫下景天科多肉植物的生理响应,评价不同品种的耐寒能力,筛选出耐寒性强的多肉品种,以繁育推广。 方法 以观赏性强的‘蓝苹果’、‘火祭’、‘丸叶松绿’和‘筒叶花月’等4个多肉品种为试材,通过人工低温(9、6、3、0和−3 ℃)胁迫处理后测定8项生理指标,将主成分分析与隶属函数法相结合,构建数学模型进行耐寒性综合评价,并通过恢复生长试验对评价结果进行验证。 结果 4个多肉品种应对低温胁迫的生理变化有显著差异,MDA和Pro含量变化呈上升趋势,而可溶性糖、相对含水量和光合色素含量变化因品种而异。−3 ℃时,‘火祭’相对含水量增幅最大且MDA释放量最大,‘筒叶花月’的光合色素含量最稳定,‘丸叶松绿’的可溶性糖与Pro积累最迅速。8项生理指标可综合为2个主成分,累积贡献率达90.59%,生物学意义显著。耐寒性综合评价得出4个多肉品种耐寒能力大小为‘丸叶松绿’>‘蓝苹果’>‘筒叶花月’>‘火祭’,评价结果与恢复生长试验观测结果基本一致。 结论 ‘丸叶松绿’在-3℃低温胁迫下恢复室温生长成活率达85.5%,植株长势良好,形态性状稳定,可繁育推广;而‘火祭’成活率仅为25.5%,对低温适应性有限。 Abstract:Objective Physiological responses and cold resistance of Crassulaceae plants under low-temp stress were studied to facilitate selection of germplasms for new variety breeding and cultivation. Method Eight physiological indicators were employed to gage the cold tolerance of 4 varieties of Crassulaceae under the temperature at 9, 6, 3, 0 or −3 ℃. A mathematical model that combined the principal component analysis and the membership function method was formulated for the evaluation, which was subsequently verified by testing the recovery of normal plant growth. Result Crassulaceae plants of different varieties differed significantly in their physiological reactions to the low-temp stress. In general, MDA and Pro contents of the plants increased with decreasing temperature, but soluble sugar, water, and photosynthetic pigment varied among the 4 varieties. Under −3 ℃, Crassula Campfire responded with the greatest increases on relative water content and MDA release, C. oblique Gollum with a mostly stabilized photosynthetic pigment, and Sedum lucidum Obesum with the fastest soluble sugar and Pro accumulations. The 8 physiological indicators were clustered into two principal components that showed a biologically significant cumulative contribution rate of 90.59%. The cold resistance of the varieties was ranked as S. lucidum Obesum>x Sedeveria Blue Elf>C. oblique Gollum>C. Campfire, which agreed with the result obtained by the plant growth recovery test. Conclusion S. lucidum Obesum had a survival rate of 85.5% under −3 ℃ and grew well with stable morphological characteristics after the cold stress treatment. In contrast, C. Campfire was limited in adapting to low temperatures and survived at a rate of merely 25.5% under the same condition. -
Key words:
- Low-temp stress /
- physiological indices /
- cold resistance /
- comprehensive evaluation
-
图 4 低温胁迫后不同多肉品种的形态变化
注:A~E分别代表9、6、3、0、−3 ℃低温处理;1~4的品种分别为‘蓝苹果’、‘火祭’、‘丸叶松绿’和‘筒叶花月’。
Figure 4. Morphological changes on succulent plants treated by low-temp stress
Note: A-E represent low temperature treatments at 9, 6, 3, 0 and −3 ℃, respectively. Varieties 1-4 are x Sedeveria Blue Elf, C. Campfire, S. lucidum Obesum, and C. oblique Gollum, respectively.
表 1 低温胁迫下多肉生理指标的主成分分析
Table 1. Principal component analysis on physiological indices of succulent plants under low-temp stress
主成分
Principal
component相对含
水量
RWC可溶
性糖
SS丙二醛
MDA游离脯
氨酸
Pro总叶绿素
TC类胡萝
卜素
Car叶绿素a
Chla叶绿素b
Chlb特征值
Eigenvalue方差贡献率
Variance
contribution
rate/%累积方差贡献率
Cumulative variance
contribution rate/%PC1 0.287 0.391 0.215 0.482 −0.400 0.286 −0.485 −0.094 4.048 50.604 50.604 PC2 0.456 −0.258 0.394 −0.058 0.326 0.446 0.074 0.505 3.199 39.983 90.587 表 2 低温胁迫下不同多肉品种耐寒性的综合分析
Table 2. Cold tolerance of succulent plants under low-temp stress
品种
Varieties相对含水量
RWC可溶性糖
SS丙二醛
MDA游离脯氨酸
Pro总叶绿素
TC类胡萝卜素
Car叶绿素a
Chla叶绿素b
Chlb综合指标1
Y1综合指标2
Y2综合评价值
F Value排序
Ranking‘蓝苹果’x Sedeveria Blue Elf 0.714 0.000 1.000 0.479 0.584 0.612 0.896 0.422 0.118 1.435 0.699 2 ‘火祭’Crassula Campfire 0.000 0.552 0.000 0.273 0.311 0.000 0.815 0.000 −0.173 0.004 −0.095 4 ‘丸叶松绿’Sedum lucidum Obesum 1.000 1.000 0.741 1.000 0.000 1.000 0.000 0.413 1.567 1.086 1.355 1 ‘筒叶花月’Crassula oblique Gollum 0.768 0.130 0.462 0.000 1.000 0.795 1.000 1.000 −0.381 1.758 0.563 3 表 3 低温胁迫后多肉恢复室温生长的成活率
Table 3. Survival rates of succulent plants at room temperature after low-temp stress
品种
Varieties9 ℃(CK) 6 ℃ 3 ℃ 0 ℃ −3 ℃ 成活率
Survival rate/%生长情况
Growth status/%成活率
Survival rate/%生长情况
Growth status/%成活率
Survival rate/%生长情况
Growth status/%成活率
Survival rate/%生长情况
Growth
status/%成活率
Survival rate/%生长情况
Growth status/%‘蓝苹果’
x Sedeveria
Blue Elf100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal65.5 叶色淡,叶片皱缩、变软
Shrunk and softened leaf with light color‘火祭’
Crassula Campfire100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal87.5 叶色变淡、
叶片发软
Softened leaf with light color25.5 叶片失绿、株型松散
Leaf chlorosis and loose plant type‘丸叶松绿’
Sedum lucidum Obesum100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal85.5 叶色较淡、长势正常
Light leaf color,better growth‘筒叶花月’
Crassula oblique Gollum100.0 正常
Normal100.0 正常
Normal100.0 正常
Normal90.5 叶色变淡
Leaf color faded51.5 叶片失绿、茎干变软
Leaf chlorosis and softened stem -
[1] 张先进, 李素华, 张旭等. 我国多肉植物引种繁育与应用现状研究 [J]. 安徽农学通报, 2019, 25(7):94−95.ZHANG X J, LI S H, ZHANG X, et al. Study on introduction, breeding and application of succulent plants in China [J]. Anhui Agricultural Science Bulletin, 2019, 25(7): 94−95.(in Chinese) [2] ERWIN J E, HENSLEY J. Plants with horticultural and ecological attributes for green roofs in a cool, dry climate [J]. Hortscience, 2019, 54(10): 1703−1711. doi: 10.21273/HORTSCI13893-19 [3] 蔡庆生. 植物生理学[M]. 北京: 中国农业大学出版社, 2014: 299-301. [4] 胡增辉, 王倩, 冷平生. 苔景天和联合勘察加景天对低温胁迫的生理响应 [J]. 新疆农业科学, 2013, 50(1):77−83.HU Z H, WANG Q, LENG P S. The physiological response of Sedum acre plant and S. kamtschaticum subsp. ellacombianum plant to low temperature [J]. Xinjiang Agricultural Sciences, 2013, 50(1): 77−83.(in Chinese) [5] JOVANOVIĆ S Č, ZLATKOVIĆ B K, STOJANOVIĆ G S. Chemotaxonomic approach to the central balkan Sedum species based on distribution of triterpenoids in their epicuticular waxes [J]. Chemistry & Biodiversity, 2016, 13(4): 459−465. [6] 荆瑞, 冯黎, 张洁, 等. 基于AHP的北京地区景天属植物园林应用综合评价 [J]. 河南农业科学, 2016, 45(10):128−133.JING R, FENG L, ZHANG J, et al. AHP-based comprehensive evaluation of landscape application of sedums in Beijing area [J]. Journal of Henan Agricultural Sciences, 2016, 45(10): 128−133.(in Chinese) [7] CLARK M J, ZHENG Y B. Effect of fertilizer rate on plant growth and leachate nutrient content during production of Sedum-vegetated green roof modules [J]. Hortscience, 2014, 49(6): 819−826. doi: 10.21273/HORTSCI.49.6.819 [8] GETTER K L, ROWE D B. Substrate depth influences Sedum plant community on a green roof [J]. HortScience, 2009, 44(2): 401−407. doi: 10.21273/HORTSCI.44.2.401 [9] 赵欢, 刘克林, 郑高言, 等. 多肉植物‘丽娜莲’Echeveria lilacina kimnach & Moran再生体系的建立 [J]. 分子植物育种, 2018, 16(18):6061−6067.ZHAO H, LIU K L, ZHENG G Y, et al. Establishment of regeneration system of succulent plant Echeveria lilaeina kimnach & moran [J]. Molecular Plant Breeding, 2018, 16(18): 6061−6067.(in Chinese) [10] MONIUSZKO-SZAJWAJ B, PECIO Ł, KOWALCZYK M, et al. New bufadienolides isolated from the roots of Kalanchoe daigremontiana (Crassulaceae) [J]. Molecules (Basel, Switzerland), 2016, 21(3): 243. doi: 10.3390/molecules21030243 [11] LÓPEZ-ANGULO G, MONTES-AVILA J, DÍAZ-CAMACHO S P, et al. Bioactive components and antimutagenic and antioxidant activities of two Echeveria DC. species [J]. Industrial Crops and Products, 2016, 85: 38−48. doi: 10.1016/j.indcrop.2016.02.044 [12] STARRY O, LEA-COX J D, KIM J, et al. Photosynthesis and water use by two Sedum species in green roof substrate [J]. Environmental and Experimental Botany, 2014, 107: 105−112. doi: 10.1016/j.envexpbot.2014.05.014 [13] 岳莉然, 岳桦. 2种多肉植物在室内环境中的光合特性及含酸量研究 [J]. 江苏农业科学, 2012, 40(7):171−173.YUE L R, YUE H. Photosynthetic characteristics and acid content of two kinds of succulent plants in indoor environment [J]. Jiangsu Agricultural Science, 2012, 40(7): 171−173.(in Chinese) [14] KOŹMIŃSKA A, AL HASSAN M, WISZNIEWSKA A, et al. Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species [J]. Scientia Horticulturae, 2019, 243: 235−242. doi: 10.1016/j.scienta.2018.08.028 [15] KIM I, HUH K Y, HUH M. Cold tolerance assessment of Sedum species for shallow-extensive green roof system [J]. Korean Journal of Horticultural Science & Technology, 2010, 28(1): 22−30. [16] 马英, 许琪, 谷战英, 等. 低温胁迫对五种景天科多肉植物生理指标的影响 [J]. 北方园艺, 2019(1):97−102.MA Y, XU Q, GU Z Y, et al. Effect of low temperature stress on physiological index of five Crassulaceae succulents [J]. Northern Horticulture, 2019(1): 97−102.(in Chinese) [17] 王璐珺, 丁彦芬, 田治国. 低温胁迫对4种景天属植物生长和生理的影响 [J]. 中国农业信息, 2013(11):117−120.WANG L J, DING Y F, TIAN Z G. Effect of low temperature on physiological indexes of 4 Crassulaceae species [J]. China Agriculture Information, 2013(11): 117−120.(in Chinese) [18] 王学奎, 黄见良. 植物生理生化实验原理与技术: 第3版[M]. 北京: 高等教育出版社, 2015: 171, 274-276. [19] 申惠翡, 赵冰. 杜鹃花品种耐热性评价及其生理机制研究 [J]. 植物生理学报, 2018, 54(2):335−345.SHEN H F, ZHAO B. Study on evaluation of heat tolerance and its physiological mechanisms in Rhododendron cultivars [J]. Plant Physiology Communications, 2018, 54(2): 335−345.(in Chinese) [20] 陈洁, 金晓玲, 宁阳, 等. 3种含笑属植物抗寒生理指标的筛选及评价 [J]. 河南农业科学, 2016, 45(2):113−118.CHEN J, JIN X L, NING Y, et al. Identification and comprehensive evaluation of cold resistance indexes of three Michelia plants [J]. Journal of Henan Agricultural Sciences, 2016, 45(2): 113−118.(in Chinese) [21] 郭英姿, 贾文庆, 刘会超, 等. 三十二个品种芍药观赏性状的主成分分析 [J]. 北方园艺, 2018(4):110−116.GUO Y Z, JIA W Q, LIU H C, et al. Principal component analysis of ornamental traits of thirty-two herbaceous peony varieties [J]. Northern Horticulture, 2018(4): 110−116.(in Chinese) [22] 吴海波. 枇杷幼果在低温胁迫下基因的差异表达[D]. 福州: 福建农林大学, 2010.WU H B. mRNA differential expression of loquat fruit under chilling stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese). [23] PAGTER M, PETERSEN K K, KJAER K H. Direct and indirect effects of shoot- and/or root-chilling stress on growth, photosynthesis, and osmotic root water uptake in Kalanchoe blossfeldiana Poelln. ‘Molly’ [J]. Journal of Horticultural Science & Biotechnology, 2013, 88(5): 571−579. [24] 李静, 陈秀龙, 李志阳, 等. 低温胁迫对10个油棕新品种生理生化特性的影响 [J]. 华南农业大学学报, 2013, 34(1):62−66.LI JING", CHEN XIULONGI, LI ZHIYANG ZHENG., et al Physiological and biochemical responses of 10 new varieties of Elaeis guineensis to low temperature stress [J]. Journal of South China Agricultural University, 2013, 34(1): 62−66.(in Chinese) [25] GOLOVKO T K, DALKE I V, BACHAROV D S. Mesostructure and activity of photosynthetic apparatus for three crassulacean species grown in cold climate [J]. Russian Journal of Plant Physiology, 2008, 55(5): 603−612. doi: 10.1134/S1021443708050038 [26] 岳海, 李国华, 李国伟, 等. 澳洲坚果不同品种耐寒特性的研究 [J]. 园艺学报, 2010, 37(1):31−38.YUE H, LI G H, LI G W, et al. Studies on cold resistance of different Macadamia cultivars [J]. Acta Horticulturae Sinica, 2010, 37(1): 31−38.(in Chinese) [27] 李付鹏, 伍宝朵, 秦晓威, 等. 可可种质资源抗寒性初步评价及低温胁迫下生理响应 [J]. 热带作物学报, 2019, 40(11):2135−2141.LI F P, WU B D, QIN X W, et al. Preliminary evaluation on cold resistance of cacao germplasm resources and physiological response under low temperature stress [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2135−2141.(in Chinese) [28] 邓仁菊, 范建新, 王永清, 等. 低温胁迫下火龙果的半致死温度及抗寒性分析 [J]. 植物生理学报, 2014, 50(11):1742−1748.DENG R J, FAN J X, WANG Y Q, et al. Semilethal temperature of pitaya under low temperature stress and evaluation on their cold resistance [J]. Plant Physiology Communications, 2014, 50(11): 1742−1748.(in Chinese) [29] 李倩, 王月异, 王玉祥. 低温处理对白三叶叶绿素、可溶性糖和丙二醛等的影响 [J]. 中国农学通报, 2016, 32(19):83−86.LI Q, WANG Y Y, WANG Y X. Effects of temperature stress on chlorophyll content, soluble sugar and MDA in Trifolium repens L [J]. Chinese Agricultural Science Bulletin, 2016, 32(19): 83−86.(in Chinese) [30] VAHDATI N, TEHRANIFAR A, KAZEMI F. Assessing chilling and drought tolerance of different plant genera on extensive green roofs in an arid climate region in Iran [J]. Journal of Environmental Management, 2017, 192: 215−223.