• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香蕉MaAQP1启动子诱饵载体及干旱胁迫酵母单杂交cDNA文库的构建

许奕 李羽佳 魏卿 王安邦 王笑一 宋顺 李敬阳

许奕,李羽佳,魏卿,等. 香蕉 MaAQP1启动子诱饵载体及干旱胁迫酵母单杂交cDNA文库的构建 [J]. 福建农业学报,2020,35(10):1078−1085 doi: 10.19303/j.issn.1008-0384.2020.10.005
引用本文: 许奕,李羽佳,魏卿,等. 香蕉 MaAQP1 启动子诱饵载体及干旱胁迫酵母单杂交cDNA文库的构建 [J]. 福建农业学报,2020,35(10):1078−1085 doi: 10.19303/j.issn.1008-0384.2020.10.005
XU Y, LI Y J, WEI Q, et al. Constructions of Banana MaAQP1 Bait Vector and Drought-resistance cDNA Library [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1078−1085 doi: 10.19303/j.issn.1008-0384.2020.10.005
Citation: XU Y, LI Y J, WEI Q, et al. Constructions of Banana MaAQP1 Bait Vector and Drought-resistance cDNA Library [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1078−1085 doi: 10.19303/j.issn.1008-0384.2020.10.005

香蕉MaAQP1启动子诱饵载体及干旱胁迫酵母单杂交cDNA文库的构建

doi: 10.19303/j.issn.1008-0384.2020.10.005
基金项目: 中国热带农业科学院基本科研业务费专项项目(1630092020002);国家自然科学基金项目(31501371);中央级公益性科研院所基本科研业务专项项目(1630092020007)
详细信息
    作者简介:

    许奕(1985−),女,硕士,研究方向:作物遗传育种(E-mail:lukydog163@163.com

    通讯作者:

    李敬阳(1976−),男,硕士,副研究员,研究方向:作物遗传育种(E-mail:jingyanglee@163.com

  • 中图分类号: S 668.1

Constructions of Banana MaAQP1 Bait Vector and Drought-resistance cDNA Library

  • 摘要:   目的   香蕉MaAQP1能够提高植物的耐旱性,研究香蕉MaAQP1的相关特性可为了解其干旱胁迫响应机制奠定基础。   方法   通过克隆MaAQP1的启动子,将启动子构建到pHIS2诱饵质粒上,转化酵母菌构建诱饵表达载体,同时构建干旱胁迫的香蕉(Musa acuminat L. AAA group cv. Brazilian)cDNA文库。   结果   克隆获得1 362 bp的启动子序列,通过分析其顺式作用元件,结果显示启动子序列中共有72个顺式作用元件,包括了TATA-box和CAAT-box核心元件,ABA响应元件、MYB元件、MYC元件、ERE元件、MeJA响应元件、光响应元件以及分生组织响应元件等;成功构建了MaAQP1诱饵载体和干旱胁迫条件下的cDNA文库,文库库容为1.25×107 CFU,插入片段平均在1 200 bp左右。   结论   本研究克隆获得了香蕉MaAQP1启动子并构建了干旱胁迫酵母单杂交cDNA文库,为下一步运用酵母单杂交筛选MaAQP1互作的转录因子、解析MaAQP1响应干旱胁迫的作用机制奠定了基础。
  • 图  1  MaAQP1启动子的PCR鉴定

    注:泳道1–2分别为随机挑取的2个启动子的PCR扩增产物,M为DNA Marker。

    Figure  1.  PCR identification of MaAQP1 promoter

    Note:Lanes 1–2 are the PCR amplification products of 2 promoters picked at random, M is DNA Marker.

    图  2  诱饵质粒pHIS2-MaAQP1菌落PCR鉴定

    注:M为DNA Marker,泳道1~6分别为随机挑取的6个pHIS2-A启菌落的扩增产物。

    Figure  2.  PCR results of bait plasmid pHIS2-MaAQP1 colony

    Note:M is DNA Marker, Lanes 1–6 are the amplification products of 6 randomLy selected pHIS2-A starter colonies.

    图  3  诱饵自激活检测结果

    Figure  3.  Detection by self-activation bait

    图  4  RNA提取结果

    注:M为DNA Marker,泳道1~2分别为提取的RNA扩增产物。

    Figure  4.  Results of RNA extraction

    Note: M is DNA Marker; Lanes 1-2 are the RNA amplification products.

    图  5  电泳检测mRNA条带

    Figure  5.  Electrophoretic detection of mRNA bands

    图  6  cDNA文库插入片段电泳图

    Figure  6.  Electrophoresis of insert fragment in cDNA library

    表  1  酵母转化反应

    Table  1.   Yeast transformation reaction

    反应
    Reaction
    AD质粒
    AD plasmid
    BD质粒
    BD plasmid
    转化平板
    Conversion plate
    检测平板
    Detection plate
    检测内容
    Test content
    1 —— pHIS2-pMaAQP1 SD-T SD-TH+3AT 自激活检测 Self-activation detection
    2 pGAD53m pHIS2 SD-TL SD-TLH+3AT 阴性对照 Negative control
    3 pGAD53m pHIS2-p53 SD-TL SD-TLH+3AT 阳性对照 Positive control
    下载: 导出CSV

    表  2  MaAQP1启动子元件分析

    Table  2.   Element analysis on MaAQP1 promoter

    序号
    Number
    结合位点
    TFBs
    元件功能
    Function of the motif
    器官
    Organism
    序列
    Sequence
    位置
    Position
    1 AAGAA-motif LRE 燕麦
    Avena sativa
    GAAAGAA/gGTAAAGAAA −1 172,−1 178
    2 ABRE 脱落酸响应
    Abscisic acid responsiveness
    拟南芥
    Arabidopsis thaliana
    ACGTG −55,−863
    3 AT~TATA-box LRE 拟南芥
    Arabidopsis thaliana
    TATATA −319,−343,−331,−355,−327,−353,−339,−363,
    −323,−347,−335,−359,−329,−351,−341,−321,
    −345,−333,−325,−337,−357,−349,−361
    4 Box II 光响应元件
    light responsive element
    马铃薯
    Solanum tuberosum
    TGGTAATAA −32
    5 CAAT-box 核心启动子
    Core promoter
    烟草/拟南芥/豌豆
    Nicotiana glutinosa/Arabidopsis thaliana/Pisum sativum
    CAAT −43,−459,−315,−316,−125,−583,−1 197,
    −208,−725,−421,−471,−158
    6 CAT-box 分生组织表达
    meristem expression
    拟南芥
    Arabidopsis thaliana
    GCCACT −254
    7 CCAAT-box 结合位点
    MYBHv1 binding site MYBHv1
    大麦
    Hordeum vulgare
    CAACGG −935
    8 CGTCA-motif 响应
    MeJA-responsiveness MeJA
    大麦
    Hordeum vulgare
    CGTCA −1 088
    9 ERE 烯响应元件
    ethylene-responsive element
    烟草
    Nicotiana glutinos
    ATTTTAAA −377,−775
    11 GT1-motif 乙烯响应元件
    light responsive element
    燕麦
    Avena sativa
    GGTTAAT −65
    12 I-box 光响应元件
    light responsive element
    小麦/棉花
    Triticum aestivum/
    Gossypium hirsutum
    AAGATAAGGCT/AGATAAGG −611,−612
    13 MYB SRE 拟南芥
    Arabidopsis thaliana
    CAACCA −151
    14 MYB recognition site SRE 拟南芥
    Arabidopsis thaliana
    CCGTTG −878
    15 MYC SRE 拟南芥
    Arabidopsis thaliana
    CATTTG/CATGTG −111,−264
    16 TATA-box 核心启动子元件
    Core promoter element
    甘蓝/拟南芥
    Brassica napus/ Arabidopsis thaliana
    ATATAT/TATATA/taTATAAAtc/ATTATA −318,−326,−323,−320,−328,−324,−332,−319,
    −327,−322,−321,−325,−330,−329,−333,−334,
    −335,−336,−343,−344,−345,−346,−347,−348,
    −349,−350,−351,−352,−353,−354,−355,
    −356,−357,−358,−359,−363,−364,−365,
    −389,−391,−837,−838
    17 TGACG-motif MeJA响应
    MeJA-responsiveness
    大麦
    Hordeum vulgare
    TGACG −58,−226
    18 Unnamed__1 未知
    unknown
    玉米
    Zea mays
    CGTGG −864,−1 274
    19 Unnamed__4 未知
    unknown
    欧芹
    Petroselinum hortense
    CTCC −28,−1 016,−1 009,−1 353,−913,−1 255,
    −1 013,−1 261,−922
    20 as-1 LRE 拟南芥
    Arabidopsis thaliana
    TGACG −58,−226
    下载: 导出CSV

    表  3  自激活检测结果

    Table  3.   Results of self-activation test

    反应
    Reaction
    转化平板
    Conversion plate
    检测平板
    Detection plate
    检测内容
    Test content
    3AT/(mmol·L−1
    0 25 50
    生长数目
    Growth number
    生长数目
    Growth number
    25/0 生长比例
    25/0 Growth ratio
    生长数目
    Growth number
    50/0 生长比例
    50/0 Growth ratio
    1 SD-T SD-TH 自激活检测
    Self-activation detection
    3 424 408 11.9% 68 1.9%
    2 SD-TL SD-TLH 阴性对照
    Negative control
    3 968 1 376 34.6% 31 0.7%
    3 SD-TL SD-TLH 阳性对照
    Positive control
    5 024 5 136 102.2% 4 160 82.8%
    下载: 导出CSV
  • [1] MAUREL C, VERDOUCQ L, LUU D T, et al. Plant aquaporins: Membrane channels with multiple integrated functions [J]. Annual Review of Plant Biology, 2008, 59: 595−624. doi: 10.1146/annurev.arplant.59.032607.092734
    [2] MAUREL C, BOURSIAC Y, LUU D T, et al. Aquaporins in plants [J]. Physiological Reviews, 2015, 95(4): 1321−1358. doi: 10.1152/physrev.00008.2015
    [3] HU W, YUAN Q Q, WANG Y, et al. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco [J]. Plant and Cell Physiology, 2012, 53(12): 2127−2141. doi: 10.1093/pcp/pcs154
    [4] KAPILAN R, VAZIRI M, ZWIAZEK J J. Regulation of aquaporins in plants under stress [J]. Biological Research, 2018, 51(1): 1−11. doi: 10.1186/s40659-017-0149-0
    [5] ZWIAZEK J J, XU H, TAN X, et al. Significance of oxygen transport through aquaporins [J]. Scientific Reports, 2017, 7(1): 40411.
    [6] WANG R, WANG M, CHEN K, et al. Exploring the roles of aquaporins in plant-microbe interactions [J]. Cells, 2018, 7(12): 267. doi: 10.3390/cells7120267
    [7] PAWŁOWICZ I, MASAJADA K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants [J]. Gene, 2019, 687: 166−172. doi: 10.1016/j.gene.2018.11.031
    [8] XU Y, HU W, LIU J H, et al. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.) [J]. Plant Physiology and Biochemistry, 2020, 147: 66−76. doi: 10.1016/j.plaphy.2019.12.011
    [9] ZHOU S Y, HU W, DENG X M, et al. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco [J]. PLoS One, 2012, 7(12): e52439. doi: 10.1371/journal.pone.0052439
    [10] XU C H, WANG M, ZHOU L, et al. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana [J]. PLoS One, 2013, 8(11): e79618. doi: 10.1371/journal.pone.0079618
    [11] XU Y, HU W, LIU J H, et al. a banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses [J]. BMC Plant Biology, 2014, 14(1): 1−14. doi: 10.1186/1471-2229-14-1
    [12] D’HONT A, DENOEUD F, AURY J M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants [J]. Nature, 2012, 488(7410): 213. doi: 10.1038/nature11241
    [13] JANG J Y, LEE S H, RHEE J Y, et al. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses [J]. Plant Molecular Biology, 2007, 64(6): 621−632. doi: 10.1007/s11103-007-9181-8
    [14] KALDENHOFF R, GROTE K, ZHU J J, et al. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana [J]. The Plant Journal, 1998, 14(1): 121−128. doi: 10.1046/j.1365-313X.1998.00111.x
    [15] GUO L, WANG Z Y, LIN H, et al. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family [J]. Cell Research, 2006, 16(3): 277−286. doi: 10.1038/sj.cr.7310035
    [16] LIAN H L, YU X, YE Q, et al. The role of aquaporin RWC3 in drought avoidance in rice [J]. Plant and Cell Physiology, 2004, 45(4): 481−489. doi: 10.1093/pcp/pch058
    [17] POTENZA L, CUCCHIARINI L, PIATTI E, et al. Effects of high static magnetic field exposure on different DNAs [J]. Bioelectromagnetics, 2004, 25(5): 352−355. doi: 10.1002/bem.10206
    [18] PTASHNE M. Regulation of transcription: From lambda to eukaryotes [J]. Trends in Biochemical Sciences, 2005, 30(6): 275−279. doi: 10.1016/j.tibs.2005.04.003
    [19] WEHNER N, WEISTE C, DRÖGE-LASER W. Molecular screening tools to study Arabidopsis transcription factors [J]. Frontiers in Plant Science, 2011, 2: 68.
    [20] SINHA N R, WILLIAMS R E, HAKE S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates [J]. Genes & Development, 1993, 7(5): 787−795.
    [21] CHEON B Y, KIM H J, OH K H, et al. Overexpression of human erythropoietin (EPO) affects plant morphologies: Retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis [J]. Transgenic Research, 2004, 13(6): 541−549. doi: 10.1007/s11248-004-2737-3
    [22] ZHAO J S, REN W, ZHI D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress [J]. Plant Cell Reports, 2007, 26(9): 1521−1528. doi: 10.1007/s00299-007-0362-3
    [23] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants [J]. Molecular & General Genetics, 1993, 236(2/3): 331−340.
    [24] TAVAKOL E, SARDARO M L S, SHARIATI J V, et al. Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors [J]. Gene, 2014, 549(1): 24−32. doi: 10.1016/j.gene.2014.07.020
    [25] KAUR C, KUMAR G, KAUR S, et al. Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2) [J]. Molecular Biology Reports, 2015, 42(6): 1139−1148. doi: 10.1007/s11033-015-3851-4
    [26] AYADI M, MIEULET D, FABRE D, et al. Functional analysis of the durum wheat gene TdPIP2; 1 and its promoter region in response to abiotic stress in rice [J]. Plant Physiology and Biochemistry, 2014, 79: 98−108. doi: 10.1016/j.plaphy.2014.02.018
    [27] 廖文彬, 李雅韵, 杨义伶, 等. 木薯干旱胁迫下离区发育相关基因MeAP2-2酵母单杂交文库构建及其上游调控基因的筛选 [J]. 中国农学通报, 2015, 31(9):119−127. doi: 10.11924/j.issn.1000-6850.2014-2290

    LIAO W B, LI Y Y, YANG Y L, et al. Yeast one-hybrid library construction and upstream gene analysis of MeAP2-2 in cassava under drought condition [J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 119−127.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-2290
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  508
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-07-29
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回