Constructions of Banana MaAQP1 Bait Vector and Drought-resistance cDNA Library
-
摘要:
目的 香蕉MaAQP1能够提高植物的耐旱性,研究香蕉MaAQP1的相关特性可为了解其干旱胁迫响应机制奠定基础。 方法 通过克隆MaAQP1的启动子,将启动子构建到pHIS2诱饵质粒上,转化酵母菌构建诱饵表达载体,同时构建干旱胁迫的香蕉(Musa acuminat L. AAA group cv. Brazilian)cDNA文库。 结果 克隆获得1 362 bp的启动子序列,通过分析其顺式作用元件,结果显示启动子序列中共有72个顺式作用元件,包括了TATA-box和CAAT-box核心元件,ABA响应元件、MYB元件、MYC元件、ERE元件、MeJA响应元件、光响应元件以及分生组织响应元件等;成功构建了MaAQP1诱饵载体和干旱胁迫条件下的cDNA文库,文库库容为1.25×107 CFU,插入片段平均在1 200 bp左右。 结论 本研究克隆获得了香蕉MaAQP1启动子并构建了干旱胁迫酵母单杂交cDNA文库,为下一步运用酵母单杂交筛选MaAQP1互作的转录因子、解析MaAQP1响应干旱胁迫的作用机制奠定了基础。 Abstract:Objective To clone MaAQP1 from a drought stressed banana plant using a constructed bait vector, and establish a cDNA library of the transformed drought-resistance gene from single-hybrids yeast cells. Method The promoter of MaAQP1 from a banana plant (Musa acuminat L. AAA group cv. Brazilian) under draught-stress was constructed on the pHIS2 plasmid as the bait to be transformed into yeast cells for the gene cloning. A cDNA library of MaAQP1 in the yeast was subsequently established for the study. Result The MaAQP1 bait vector was successfully constructed. The sequence of the 1 362 bp promoter was cloned and analyzed to show 72 cis-acting TATA-box and CAAT-box core elements as well as elements of MYB, MYC, ERE, and MeJA as well as those of ABA, light, and meristem responses, etc. A drought-resistance cDNA library of 1.25×107 CFU in capacity with an average insert size of about 1 200 bp was established. Conclusion The results provided a basis for screening transcription factors of the cloned MaAQP1 in the yeast single-hybrids to decipher the mechanism of MaAQP1 in response to drought for improving the stress resistance of plants. -
Key words:
- Banana /
- drought /
- MaAQP1 /
- bait vector /
- cDNA library
-
表 1 酵母转化反应
Table 1. Yeast transformation reaction
反应
ReactionAD质粒
AD plasmidBD质粒
BD plasmid转化平板
Conversion plate检测平板
Detection plate检测内容
Test content1 —— pHIS2-pMaAQP1 SD-T SD-TH+3AT 自激活检测 Self-activation detection 2 pGAD53m pHIS2 SD-TL SD-TLH+3AT 阴性对照 Negative control 3 pGAD53m pHIS2-p53 SD-TL SD-TLH+3AT 阳性对照 Positive control 表 2 MaAQP1启动子元件分析
Table 2. Element analysis on MaAQP1 promoter
序号
Number结合位点
TFBs元件功能
Function of the motif器官
Organism序列
Sequence位置
Position1 AAGAA-motif LRE 燕麦
Avena sativaGAAAGAA/gGTAAAGAAA −1 172,−1 178 2 ABRE 脱落酸响应
Abscisic acid responsiveness拟南芥
Arabidopsis thalianaACGTG −55,−863 3 AT~TATA-box LRE 拟南芥
Arabidopsis thalianaTATATA −319,−343,−331,−355,−327,−353,−339,−363,
−323,−347,−335,−359,−329,−351,−341,−321,
−345,−333,−325,−337,−357,−349,−3614 Box II 光响应元件
light responsive element马铃薯
Solanum tuberosumTGGTAATAA −32 5 CAAT-box 核心启动子
Core promoter烟草/拟南芥/豌豆
Nicotiana glutinosa/Arabidopsis thaliana/Pisum sativumCAAT −43,−459,−315,−316,−125,−583,−1 197,
−208,−725,−421,−471,−1586 CAT-box 分生组织表达
meristem expression拟南芥
Arabidopsis thalianaGCCACT −254 7 CCAAT-box 结合位点
MYBHv1 binding site MYBHv1大麦
Hordeum vulgareCAACGG −935 8 CGTCA-motif 响应
MeJA-responsiveness MeJA大麦
Hordeum vulgareCGTCA −1 088 9 ERE 烯响应元件
ethylene-responsive element烟草
Nicotiana glutinosATTTTAAA −377,−775 11 GT1-motif 乙烯响应元件
light responsive element燕麦
Avena sativaGGTTAAT −65 12 I-box 光响应元件
light responsive element小麦/棉花
Triticum aestivum/
Gossypium hirsutumAAGATAAGGCT/AGATAAGG −611,−612 13 MYB SRE 拟南芥
Arabidopsis thalianaCAACCA −151 14 MYB recognition site SRE 拟南芥
Arabidopsis thalianaCCGTTG −878 15 MYC SRE 拟南芥
Arabidopsis thalianaCATTTG/CATGTG −111,−264 16 TATA-box 核心启动子元件
Core promoter element甘蓝/拟南芥
Brassica napus/ Arabidopsis thalianaATATAT/TATATA/taTATAAAtc/ATTATA −318,−326,−323,−320,−328,−324,−332,−319,
−327,−322,−321,−325,−330,−329,−333,−334,
−335,−336,−343,−344,−345,−346,−347,−348,
−349,−350,−351,−352,−353,−354,−355,
−356,−357,−358,−359,−363,−364,−365,
−389,−391,−837,−83817 TGACG-motif MeJA响应
MeJA-responsiveness大麦
Hordeum vulgareTGACG −58,−226 18 Unnamed__1 未知
unknown玉米
Zea maysCGTGG −864,−1 274 19 Unnamed__4 未知
unknown欧芹
Petroselinum hortenseCTCC −28,−1 016,−1 009,−1 353,−913,−1 255,
−1 013,−1 261,−92220 as-1 LRE 拟南芥
Arabidopsis thalianaTGACG −58,−226 表 3 自激活检测结果
Table 3. Results of self-activation test
反应
Reaction转化平板
Conversion plate检测平板
Detection plate检测内容
Test content3AT/(mmol·L−1) 0 25 50 生长数目
Growth number生长数目
Growth number25/0 生长比例
25/0 Growth ratio生长数目
Growth number50/0 生长比例
50/0 Growth ratio1 SD-T SD-TH 自激活检测
Self-activation detection3 424 408 11.9% 68 1.9% 2 SD-TL SD-TLH 阴性对照
Negative control3 968 1 376 34.6% 31 0.7% 3 SD-TL SD-TLH 阳性对照
Positive control5 024 5 136 102.2% 4 160 82.8% -
[1] MAUREL C, VERDOUCQ L, LUU D T, et al. Plant aquaporins: Membrane channels with multiple integrated functions [J]. Annual Review of Plant Biology, 2008, 59: 595−624. doi: 10.1146/annurev.arplant.59.032607.092734 [2] MAUREL C, BOURSIAC Y, LUU D T, et al. Aquaporins in plants [J]. Physiological Reviews, 2015, 95(4): 1321−1358. doi: 10.1152/physrev.00008.2015 [3] HU W, YUAN Q Q, WANG Y, et al. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco [J]. Plant and Cell Physiology, 2012, 53(12): 2127−2141. doi: 10.1093/pcp/pcs154 [4] KAPILAN R, VAZIRI M, ZWIAZEK J J. Regulation of aquaporins in plants under stress [J]. Biological Research, 2018, 51(1): 1−11. doi: 10.1186/s40659-017-0149-0 [5] ZWIAZEK J J, XU H, TAN X, et al. Significance of oxygen transport through aquaporins [J]. Scientific Reports, 2017, 7(1): 40411. [6] WANG R, WANG M, CHEN K, et al. Exploring the roles of aquaporins in plant-microbe interactions [J]. Cells, 2018, 7(12): 267. doi: 10.3390/cells7120267 [7] PAWŁOWICZ I, MASAJADA K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants [J]. Gene, 2019, 687: 166−172. doi: 10.1016/j.gene.2018.11.031 [8] XU Y, HU W, LIU J H, et al. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.) [J]. Plant Physiology and Biochemistry, 2020, 147: 66−76. doi: 10.1016/j.plaphy.2019.12.011 [9] ZHOU S Y, HU W, DENG X M, et al. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco [J]. PLoS One, 2012, 7(12): e52439. doi: 10.1371/journal.pone.0052439 [10] XU C H, WANG M, ZHOU L, et al. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana [J]. PLoS One, 2013, 8(11): e79618. doi: 10.1371/journal.pone.0079618 [11] XU Y, HU W, LIU J H, et al. a banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses [J]. BMC Plant Biology, 2014, 14(1): 1−14. doi: 10.1186/1471-2229-14-1 [12] D’HONT A, DENOEUD F, AURY J M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants [J]. Nature, 2012, 488(7410): 213. doi: 10.1038/nature11241 [13] JANG J Y, LEE S H, RHEE J Y, et al. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses [J]. Plant Molecular Biology, 2007, 64(6): 621−632. doi: 10.1007/s11103-007-9181-8 [14] KALDENHOFF R, GROTE K, ZHU J J, et al. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana [J]. The Plant Journal, 1998, 14(1): 121−128. doi: 10.1046/j.1365-313X.1998.00111.x [15] GUO L, WANG Z Y, LIN H, et al. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family [J]. Cell Research, 2006, 16(3): 277−286. doi: 10.1038/sj.cr.7310035 [16] LIAN H L, YU X, YE Q, et al. The role of aquaporin RWC3 in drought avoidance in rice [J]. Plant and Cell Physiology, 2004, 45(4): 481−489. doi: 10.1093/pcp/pch058 [17] POTENZA L, CUCCHIARINI L, PIATTI E, et al. Effects of high static magnetic field exposure on different DNAs [J]. Bioelectromagnetics, 2004, 25(5): 352−355. doi: 10.1002/bem.10206 [18] PTASHNE M. Regulation of transcription: From lambda to eukaryotes [J]. Trends in Biochemical Sciences, 2005, 30(6): 275−279. doi: 10.1016/j.tibs.2005.04.003 [19] WEHNER N, WEISTE C, DRÖGE-LASER W. Molecular screening tools to study Arabidopsis transcription factors [J]. Frontiers in Plant Science, 2011, 2: 68. [20] SINHA N R, WILLIAMS R E, HAKE S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates [J]. Genes & Development, 1993, 7(5): 787−795. [21] CHEON B Y, KIM H J, OH K H, et al. Overexpression of human erythropoietin (EPO) affects plant morphologies: Retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis [J]. Transgenic Research, 2004, 13(6): 541−549. doi: 10.1007/s11248-004-2737-3 [22] ZHAO J S, REN W, ZHI D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress [J]. Plant Cell Reports, 2007, 26(9): 1521−1528. doi: 10.1007/s00299-007-0362-3 [23] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants [J]. Molecular & General Genetics, 1993, 236(2/3): 331−340. [24] TAVAKOL E, SARDARO M L S, SHARIATI J V, et al. Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors [J]. Gene, 2014, 549(1): 24−32. doi: 10.1016/j.gene.2014.07.020 [25] KAUR C, KUMAR G, KAUR S, et al. Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2) [J]. Molecular Biology Reports, 2015, 42(6): 1139−1148. doi: 10.1007/s11033-015-3851-4 [26] AYADI M, MIEULET D, FABRE D, et al. Functional analysis of the durum wheat gene TdPIP2; 1 and its promoter region in response to abiotic stress in rice [J]. Plant Physiology and Biochemistry, 2014, 79: 98−108. doi: 10.1016/j.plaphy.2014.02.018 [27] 廖文彬, 李雅韵, 杨义伶, 等. 木薯干旱胁迫下离区发育相关基因MeAP2-2酵母单杂交文库构建及其上游调控基因的筛选 [J]. 中国农学通报, 2015, 31(9):119−127. doi: 10.11924/j.issn.1000-6850.2014-2290LIAO W B, LI Y Y, YANG Y L, et al. Yeast one-hybrid library construction and upstream gene analysis of MeAP2-2 in cassava under drought condition [J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 119−127.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-2290