Cloning and Expressions of LIS in Dendrobium officinale
-
摘要:
目的 克隆铁皮石斛(Dendrobium officinale)芳樟醇合酶(linalool synthase, LIS)基因,分析该基因在铁皮石斛开花期花、叶、茎和根中的表达及茉莉酸甲酯(Methyl Jasmonate, MeJA)诱导表达模式,以期为进一步鉴定其功能及分析铁皮石斛单萜类代谢机制奠定基础。 方法 利用RACE-PCR和RT-PCR技术克隆DoLIS基因全长cDNA序列和开放阅读框(open reading frame, ORF),利用ProtParam和BLAST P在线软件进行理化性质分析和氨基酸同源性比对,采用MEGA 6.0构建系统进化树。利用qPCR方法分析DoLIS基因在开花期铁皮石斛花、叶、茎和根中的表达及MeJA处理后叶片中的表达模式。 结果 DoLIS基因cDNA序列全长2 844 bp,含有1个2 538 bp的ORF,编码845个氨基酸。分子量为98.298 kD,理论等电点为7.04,不稳定系数是46.29,属不稳定蛋白。DoLIS蛋白具有Terpene_cyclase_plant_C1保守结构域。系统进化分析表明,DoLIS与其他物种的(S)-(+)-LIS聚在同一支,与姬蝴蝶兰(XP_020576697)的LIS亲缘关系最近。qPCR分析结果显示,DoLIS基因在铁皮石斛开花期叶片中的相对表达量最高,在MeJA处理后相对表达量呈先上升后下降的趋势,处理后5 h相对表达量达到最高,是诱导前的3.88倍。 结论 本研究克隆了铁皮石斛DoLIS基因cDNA全长,该基因在叶片中的相对表达量极显著高于花、茎和根中的表达量。MeJA处理能显著诱导DoLIS基因的表达。 Abstract:Objective Linalool synthase gene, LIS, of Dendrobium officinale was cloned. Expression patterns of the gene in flower, leaf, stem, and root at flowering stage as well as those in leaf induced by methyl jasmonate (MeJA) were determined to help decipher the monoterpene metabolism mechanism involved. Method Full-length cDNA of D. officinale LIS (DoLIS) was cloned using RACE-PCR and RT-PCR. Physiochemical properties and amino acid homology were analyzed by ProtParam and BLAST P, and phylogenetic tree constructed by MEGA 6.0. Expressions of DoLIS in the flowers, leaves, stems, and roots of D. officinale at flowering stage, as well as those in the MeJA-treated leaves were determined by quantitative real time PCR. Result The full-length of DoLIS was 2 844 bp with a 2 538 bp ORF encoding 845 amino acids. The protein had a molecular weight of 98.298 KD, a theoretical isoelectric point of 7.04, and an instability coefficient of 46.29. An unstable protein, DoLIS contained a conservative domain of Terpene_cyclase_plant_C1. The phylogenetic analysis showed that DoLIS was closely related to Phalaenopsis equestris (XP_02057697) and clustered in the same branch with the (s)-(+)-LIS of other species. The qPCR results on relative expression of DoLIS indicated that the highest level at flowering stage was found in the leaves. The MeJA induction produced the peak DoLIS expression, which was 3.88-fold of the original, in 5h after the treatment. Conclusion This study cloned the full-length cDNA of DoLIS and discovered the relative expression of the gene to be significantly higher in the leaves than the flowers, stems or roots of a D. officinale plant at the flowering stage. In addition, the expression could be upregulated by MeJA induction. -
Key words:
- Dendrobium officinale /
- linalool synthase /
- gene cloning /
- expression analysis /
- methyl jasmonate
-
表 1 PCR引物及其序列
Table 1. PCR primers and sequences
引物名称
Primer name引物序列(5′-3′)
Primer sequence(5′-3′)3LIS-F1 CTCAACACAGAGTCAAGAAAGG 3LIS-F2 TCATTTGACTCGCCAACCGCAC dT-adapt CTGATCTAGAGGTACCGGATCCTTTTTTTTTTTTTTTTT adapt CTGATCTAGAGGTACCGGATCC DoLIS-F CCGGAATTCATGGAGCAGTCATTGTGGTT DoLIS-R CCGCTCGAGCTTTCTCCCTTCATTTGCTC LIS-F TGGATCATTTGGAGCACAG LIS-R CATTTGGCTGCTTCCTTTC DoACT-F AGGAAGGCGGCTTTGAATC DoACT-R CCATGCCAACCATGACACC 注:下划线碱基为酶切位点。
Note: The underlined bases were the enzyme site. -
[1] 姜冬梅, 朱源, 余江南, 等. 芳樟醇药理作用及制剂研究进展 [J]. 中国中药杂志, 2015, 40(18):3530−3533.JIANG D M, ZHU Y, YU J N, et al. Advances in research of pharmacological effects and formulation studies of linalool [J]. China Journal of Chinese Materia Medica, 2015, 40(18): 3530−3533.(in Chinese) [2] 吴克刚, 赵欣欣, 段雪娟, 等. 芳樟醇气相抗菌活性与作用机制 [J]. 食品科学, 2020, 41(1):61−67.WU K G, ZHAO X X, DUAN X J, et al. Antibacterial activity and mechanism of action of vapor-phase linalool [J]. Food Science, 2020, 41(1): 61−67.(in Chinese) [3] QUEIROGA C L, DUARTE M C T, RIBEIRO B B, et al. Linalool production from the leaves of Bursera aloexylon and its antimicrobial activity [J]. Fitoterapia, 2007, 78(4): 327−328. doi: 10.1016/j.fitote.2007.03.012 [4] ALVIANO W S, MENDONÇA-FILHO R R, ALVIANO D S, et al. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms [J]. Oral Microbiology and Immunology, 2005, 20(2): 101−105. doi: 10.1111/j.1399-302X.2004.00201.x [5] PARK S N, LIM Y K, FREIRE M O, et al. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria [J]. Anaerobe, 2012, 18(3): 369−372. doi: 10.1016/j.anaerobe.2012.04.001 [6] BONNLANDER B, CAPPUCCIO R, LIVERANI F S, et al. Analysis of enantiomeric linalool ratio in green and roasted coffee [J]. Flavour and Fragrance Journal, 2006, 21(4): 637−641. doi: 10.1002/ffj.1633 [7] CASABIANCA H, GRAFF J, FAUGIER V, et al. Enantiomeric distribution studies of linalool and linalyl acetate. A powerful tool for authenticity control of essential oils [J]. Hrc-journal of High Resolution Chromatography, 1998, 21(2): 107−112. doi: 10.1002/(SICI)1521-4168(19980201)21:2<107::AID-JHRC107>3.0.CO;2-A [8] CHEN X, YAUK Y, NIEUWENHUIZEN N J, et al. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds [J]. Functional Plant Biology, 2010, 37(3): 232−243. doi: 10.1071/FP09179 [9] CROWELL A L, WILLIAMS D C, DAVIS E M, et al. Molecular cloning and characterization of a new linalool synthase [J]. Archives of Biochemistry and Biophysics, 2002, 405(1): 112−121. doi: 10.1016/S0003-9861(02)00348-X [10] 唐丽, 唐芳, 段经华, 等. 金桂芳樟醇合成酶基因的克隆与序列分析 [J]. 林业科学, 2009, 45(5):11−19.TANG L, TANG F, DUAN J H, et al. Cloning and sequence analysis of a homologous linalooi synthase gene involved in floral scents in Osmanthus fragrans var. thunbergii [J]. Scientia Silvae Sinicae, 2009, 45(5): 11−19.(in Chinese) [11] 赵钟鑫, 王健, 李琴, 等. 阔叶薰衣草芳樟醇合成酶基因的克隆与表达载体构建 [J]. 植物研究, 2013, 33(3):308−316.ZHAO Z X, WANG J, LI Q, et al. Cloning a homologous linalool synthase gene of Lavandula latifolia and construction of plant expression vector [J]. Bulletin of Botanical Research, 2013, 33(3): 308−316.(in Chinese) [12] 樊荣辉, 黄敏玲, 钟淮钦, 等. 小苍兰芳樟醇合酶基因的克隆及表达分析 [J]. 中国细胞生物学学报, 2016, 38(10):1185−1190.FAN R H, HUANG M L, ZHONG H Q, et al. Cloning and expression of linalool synthase gene in Freesia [J]. Chinese Journal of Cell Biology, 2016, 38(10): 1185−1190.(in Chinese) [13] 刘偲, 席婉, 袁金梅, 等. 桂花‘莲籽丹桂’芳樟醇合酶基因OfTPS5的克隆及功能鉴定 [J]. 园艺学报, 2020, 47(2):310−320.LIU C, XI W, YUAN J M, et al. Molecular cloning and functional characterization of linalool synthase gene OfTPS5 in Osmanthus fragrans ‘Lianzi dangui' flowers [J]. Acta Horticulturae Sinica, 2020, 47(2): 310−320.(in Chinese) [14] HO T, MURTHY H N, PARK S. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures [J]. International Journal of Molecular Sciences, 2020, 21(3): 716. doi: 10.3390/ijms21030716 [15] 韦荣昌, 覃芳, 唐美琼, 等. 茉莉酸甲酯对罗汉果SQS、CS和CAS基因表达的影响 [J]. 北方园艺, 2019(2):42−47.WEI R C, QIN F, TANG M Q, et al. Effect of methyl jasmonate on expression of SQS, CS and CAS genes in Siraitia grosvenorii [J]. Northern Horticulture, 2019(2): 42−47.(in Chinese) [16] 王启, 刘广达, 苏蕾. 水杨酸和茉莉酸甲酯对微型月季萜类次生代谢产物相关基因表达的影响 [J]. 分子植物育种, 2020, 18(3):797−803.WANG Q, LIU G D, SU L. Effects of salicylic acid and methyl jasmonate on expression of terpenoid secondary metabolites related genes of miniature rose [J]. Molecular Plant Breeding, 2020, 18(3): 797−803.(in Chinese) [17] 彭亮, 颜永刚, 陈莹, 等. 茉莉酸甲酯诱导下远志幼苗转录组分析及三萜类生物合成途径关键酶基因挖掘[J]. 中草药, 2020, 51(9): 2517-2529.PENG L, YAN Y G, CHEN Y, et al. Transcriptome analysis of Polygala tenuifolia seedlings induced by methyl jasmonate and key genes mining for triterpenoid biosynthetic pathway[J]. Chinese Traditional and Herbal Drugs, 2020, 51(9): 2517-2529. (in Chinese). [18] 霍昕, 周建华, 刘文炜, 等. 铁皮石斛茎、叶挥发性成分研究 [J]. 天然产物研究与开发, 2010, 22(B08):43−45.HUO X, ZHOU J H, LIU W W, et al. Determination of chemical constituents of the volatile oil from stem and leaf of Dendrobium candidum Wall. Ex Lindl [J]. Natural Product Research and Development, 2010, 22(B08): 43−45.(in Chinese) [19] 付涛, 王志龙, 林立, 等. GC-MS法比较铁皮石斛试管苗不同部位中挥发油的成分 [J]. 中成药, 2015, 37(10):2233−2238.FU T, WANG Z L, LIN L, et al. Comparison of volatile oils in different parts of Dendrobium officinale tube seedlings by GC-MS [J]. Chinese Traditional Patent Medicine, 2015, 37(10): 2233−2238.(in Chinese) [20] 邹晖, 王伟英, 戴艺民, 等. GC-MS法比较分析铁皮石斛原球茎和花的挥发性成分 [J]. 福建农业科技, 2019(9):50−56.ZOU H, WANG W Y, DAI Y M, et al. Comparative analysis of volatile components of Dendrobium officinale protocorm and flower by GC-MS [J]. Fujian Agricultural Science and Technology, 2019(9): 50−56.(in Chinese) [21] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197 [22] PULIDO P, PERELLO C, RODRIGUEZ-CONCEPCION M. New insights into plant isoprenoid metabolism [J]. Molecular Plant, 2012, 5(5): 964−967. doi: 10.1093/mp/sss088 [23] DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds [J]. The New Phytologist, 2013, 198(1): 16−32. doi: 10.1111/nph.12145 [24] YUE Y C, YU R C, FAN Y P. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium [J]. Planta, 2014, 240(4): 745−762. doi: 10.1007/s00425-014-2127-x [25] GREEN S A, CHEN X Y, NIEUWENHUIZEN N J, et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis) [J]. Journal of Experimental Botany, 2012, 63(5): 1951−1967. doi: 10.1093/jxb/err393 [26] DUDAREVA N, CSEKE L, BLANC V M, et al. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower [J]. The Plant Cell, 1996, 8(7): 1137−1148. [27] 张文娟, 曹小迎, 蒋继宏. 茉莉酸甲酯诱导大戟三萜类代谢的研究 [J]. 广西植物, 2015, 35(4):591−597.ZHANG W J, CAO X Y, JIANG J. Triterpene biosynthesis in Euphorbia pekinensis induced by methyl jasmonate [J]. Guihaia, 2015, 35(4): 591−597.(in Chinese)