Grain-filling of Diploid and Tetraploid Tartary Buckwheat
-
摘要:
目的 比较分析二倍体和四倍体苦荞材料的根系、灌浆特性等相关生理性状,明确四倍体苦荞充实差的生理原因。 方法 以二倍体苦荞品种小黄荞和六苦2081及其四倍体苦荞材料TB193、TB198为试验材料,比较分析了四倍体和二倍体苦荞间灌浆特性、淀粉合成酶活性、根系形态生理、农艺性状、充实度及产量的差异。 结果 2个苦荞品种及其四倍体苦荞材料在花后25 d百粒重几乎不再增加,且二倍体苦荞的百粒重高于四倍体苦荞;四倍体苦荞的灌浆起始势、最大灌浆速率和平均灌浆速率低于二倍体苦荞,达最大灌浆速率的天数高于二倍体;灌浆前期二倍体苦荞籽粒的AGPase和SSS活性强于四倍体苦荞,中后期则低于四倍体苦荞;四倍体苦荞的根系长度、根系表面积、根系体积、根系活力、根系伤流液总体显著高于二倍体苦荞;二倍体苦荞的株高、主茎分枝数、主茎节数、1~2节节间粗度、1~2节节间粗度总体均低于四倍体苦荞,充实度和产量则分别是四倍体苦荞的2.97和1.23倍(两品种的平均值)。 结论 较低的灌浆起始势、灌浆速率,以及灌浆前期较低的淀粉合成酶活性是四倍体苦荞充实较差的重要生理原因。 Abstract:Objective Grain-filling of Tartary buckwheat (Fagopyrum tataricum) was studied to determine the cause of inferior crop yield of tetraploid variety. Method Diploid Tartary buckwheat varieties, Xiaohuang and Liuku 2081, were compared with the tetraploid TB193 and TB198 on grain-filling, starch biosynthesis, root morphology and physiology, agronomic characteristics, and grain yield for the analysis. Result Although both Tartary buckwheat varieties stopped the 100-grain weight increase 25 d after anthesis, the diploid was higher than the tetraploid in that respect. In addition, compared to the tetraploid varieties, the diploid Tartary buckwheat started earlier on the filling initiation; achieved higher peak and average filling rates; reached the maximum grain-filling in a shorter time; showed greater AGPase and SSS activities in grains at early grain-filling stage but lower in the middle and late filling stages; had significantly lower length, surface area, volume, activity, and fluid on the roots, height on the plant, number of branches on the main stem, node count on the main stem, girth between the 1st and 2nd nodes, and 1-2 internode thickness. On average, the diploid Tartary buckwheat was 2.97 times higher on plumpness and 1.23 times higher on yield than the tetraploid counterpart. Conclusion The lower grain filling initiation, filling rate, and starch synthase activity at early filling stage appeared to be the key physiological indicators of the inferior performance of the tetraploid Tartary buckwheat on grain production. -
表 1 籽粒的百粒重
Table 1. Hundred-grain weight of Tartary buckwheat
(单位:g) 品种 Variety 5 d 10 d 15 d 20 d 25 d 30 d E1 0.07±0.01 a 0.76±0.07 a 1.37±0.06 a 1.57±0.07 a 1.79±0.03 a 1.80±0.03 a S1 0.04±0.02 b 0.41±0.02 b 1.12±0.07 b 1.54±0.06 a 1.71±0.02 a 1.77±0.05 a E2 0.13±0.02 a 0.99±0.03 a 1.63±0.04 a 1.76±0.07 a 1.92±0.05 a 1.96±0.03 a S2 0.11±0.03 b 0.82±0.05 b 1.40±0.03 b 1.74±0.04 a 1.79±0.03 b 1.83±0.02 a 注:同列数据后不同小写字母表示同一品种不同材料之间差异显著(P<0.05),表2~6同。
Note: Different letter means significant difference of each level (P<0.05). The same as table 2-6.表 2 籽粒灌浆的Richards方程参数
Table 2. Parameters in Richards equation for evaluating grain-filling of Tartary buckwheat
品种
Variety生长终值量
A初值参数
B生长速率参数
K形状参数
N决定系数
R2灌浆起始势
R0灌浆速率
最大时间
Tmax.G/d最大灌浆
速率
Gmax/
(g·d−1)平均灌浆
速率
Gmean/
(g·d−1)灌浆速率
最大生长量/
籽粒生长
终值量
I/%E1 1.80±0.11 0.51±0.02 0.24±0.03 0.05±0.01 0.995±0.052 4.41±0.42 a 9.48±0.87 b 0.15±0.01 a 0.10±0.02 a 37.76±3.12 a S1 1.79±0.13 1.73±0.09 0.24±0.02 0.10±0.02 1.000±0.021 2.28±0.21 b 11.92±1.12 a 0.15±0.01 a 0.10±0.01 a 38.61±2.97 a E2 1.92±0.14 1.09±0.10 0.29±0.01 0.08±0.01 0.996±0.034 3.45±0.27 a 8.80±0.80 b 0.20±0.01 a 0.13±0.01 a 38.29±2.11 a S2 1.85±0.09 1.13±0.98 0.24±0.01 0.12±0.01 0.998±0.042 1.99±0.28 b 9.64±1.02 a 0.15±0.02 b 0.10±0.01 b 38.86±2.07 a 注:A:生长终值量;B:初值参数;K:生长速率参数;N:形状参数;t:开花后的时间;R2:判断系数;R0:灌浆起始势;Tmax.G:达最大灌浆速率的时间;Gmax:最大灌浆速率;Gmean:平均灌浆速率;I为灌浆速率为最大时的生长量与籽粒最终质量比值。
A: The final grain weight at harvest; B: The initial value of parameter; K: The constant growth rate; N: The shape parameter; R2 : The compatibility; R0: The initial growth power; Tmax.G : The time with maximum grain-filling rate; Gmax: The maximum grain-filling rate; Gmean: The mean grain-filling rate; I: the ratio of the growth at the maximum grain filling rate to the final grain dry weight.表 3 籽粒灌浆阶段的划分
Table 3. Grain-filling stages of Tartary buckwheat
品种
Variety灌浆前期 Early filling stage 灌浆中期 Middle filling stage 灌浆后期 Later filling stage 天数
Days/d平均速率
Average rate/(g·d−1)贡献率
Contribution/%天数
Days/d平均速率
Average rate/(g·d−1)贡献率
Contribution/%天数
Days/d平均速率
Average rate/(g·d−1)贡献率
Contribution/%E1 5.33±0.47 b 0.03±0.01 a 8.17±0.48 b 13.63±1.21 b 0.13±0.02 a 60.95±5.21 a 28.85±1.27 b 0.04±0.01 a 29.88±1.38 a S1 7.66±0.49 a 0.02±0.01 b 8.97±0.69 a 16.19±1.09 a 0.13±0.01 a 60.90±4.23 a 31.41±2.34 a 0.03±0.02 b 29.12±2.03 b E2 5.36±0.34 a 0.03±0.02 a 8.67±0.57 b 12.24±1.57 b 0.17±0.03 a 60.92±5.28 a 24.62±2.10 b 0.05±0.03 a 29.41±2.14 a S2 5.32±0.36 a 0.03±0.02 a 9.21±0.61 a 13.96±1.02 a 0.13±0.01 b 60.88±1.20 a 29.25±3.02 a 0.04±0.02 b 28.91±2.07 b 表 4 苦荞籽粒的淀粉合成酶活性
Table 4. Starch synthase activity of Tartary buckwheat
指标
Item品种
Variety时期 Period 5 d 10 d 15 d 20 d 25 d 30 d ADPG 焦磷酸化酶AGPase/(U ·g−1·min−1) E1 0.31±0.02 a 0.55±0.03 a 0.46±0.04 b 0.36±0.03 b 0.27±0.02 b 0.26±0.02 b S1 0.20±0.01 b 0.36±0.02 b 0.49±0.05 a 0.43±0.05 a 0.33±0.04 a 0.30±0.02 a E2 0.26±0.03 a 0.46±0.03 a 0.36±0.04 b 0.27±0.03 b 0.20±0.01 b 0.20±0.03 a S2 0.15±0.0.2 b 0.32±0.02 b 0.41±0.02 a 0.32±0.01 a 0.23±0.02 a 0.20±0.02 a 可溶性淀粉合酶SSS/(U ·mg−1 ·min−1) E1 6.56±0.28 a 10.03±1.07 a 4.97±0.36 b 2.47±0.17 b 2.01±0.11 b 1.03±0.09 b S1 4.92±0.39 b 8.55±0.38 b 5.98±0.32 a 3.38±0.25 a 2.98±0.23 a 1.53±0.11 a E2 3.72±0.34 a 9.28±0.59 a 4.24±0.51 b 2.16±0.19 b 1.68±0.10 b 0.97±0.01 b S2 3.41±0.16 b 7.54±0.46 b 4.74±0.40 a 2.38±0.20 a 2.00±0.25 a 1.33±0.20 a 淀粉分支酶SBE/(U ·g−1·min−1) E1 2.37±0.18 a 4.55±0.32 a 4.39±0.29 a 3.97±0.45 a 3.45±0.27 a 3.17±0.28 a S1 1.33±0.09 b 3.31±0.17 b 4.07±0.24 b 3.71±0.31 b 3.22±0.18 b 2.95±0.32 b E2 2.29±0.17 a 4.45±0.35 a 4.32±0.38 a 3.87±0.28 a 3.25±0.41 a 2.53±0.24 a S2 1.12±0.11 b 3.13±0.21 b 3.96±0.21 b 3.49±0.24 b 2.54±0.20 b 1.93±0.17 b 表 5 二倍体和四倍体苦荞的根系形态及生理指标比较
Table 5. Root morphology and physiology of diploid and tetraploid Tartary buckwheat
时期
Stage品种
Variety根系长度
Length/cm根系表面积
Surface
area/cm2根系体积
Volume/cm3根系平均直径
Average
diameter/mm根系伤流液
Root system
fluid/(g·h−1)根系活力
Root activity/
(μg·g−1·h−1)苗期 Seedling stage E1 44.91±1.49 b 5.03±0.16 b 0.10±0.01 b 0.42±0.02 a 0.044±0.003 a 21.71±1.21 a S1 55.50±1.34 a 6.46±0.21 a 0.12±0.01 a 0.43±0.0.3 a 0.041±0.002 a 21.23±1.06 a E2 43.57±1.27 b 4.31±0.20 b 0.07±0.03 b 0.37±0.02 b 0.025±0.001 b 13.91±0.98 b S2 55.08±1.12 a 6.36±0.18 a 0.13±0.04 a 0.44±0.01 a 0.033±0.003 a 17.16±1.13 a 开花期 Anthesis stage E1 168.49±9.45 b 31.06±1.34 b 1.28±0.03 b 0.53±0.06 a 0.026±0.001 b 3.31±0.11 b S1 200.85±8.69 a 35.95±1.26 a 1.50±0.04 a 0.54±0.05 a 0.035±0.002 a 6.40±0.28 a E2 156.79±9.12 b 25.48±1.33 b 0.78±0.02 b 0.51±0.02 a 0.025±0.001 b 3.92±0.32 a S2 300.07±9.34 a 55.29±1.06 a 2.53±0.16 a 0.54±0.04 a 0.052±0.002 a 3.94±0.40 a 灌浆期 Grain filling stage E1 264.61±8.37 a 31.28±1.25 b 0.96±0.01 b 0.42±0.02 a 0.004±0.002 b 4.79±0.29 b S1 220.99±8.67 b 36.72±2.26 a 1.23±0.17 a 0.44±0.03 a 0.006±0.004 a 7.90±0.47 a E2 254.45±9.61 a 23.09±1.63 b 0.58±0.03 b 0.40±0.02 b 0.010±0.001 b 7.49±0.51 b S2 186.76±6.47 b 36.50±1.71 a 1.21±0.11 a 0.44±0.04 a 0.016±0.002 a 5.35±0.20 a 成熟期 Mature stage E1 229.37±10.55 b 29.49±0.99 b 0.85±0.04 b 0.44±0.03 a 0.005±0.001 b 2.98±0.37 b S1 245.02±9.91 a 36.04±1.01 a 1.31±0.03 a 0.46±0.02 a 0.006±0.002 a 5.37±0.31 a E2 171.82±7.34 b 27.21±1.13 b 0.94±0.05 b 0.44±0.03 a 0.009±0.002 b 3.55±0.26 a S2 230.18±10.25 a 34.38±1.08 a 1.38±0.02 a 0.46±0.04 a 0.016±0.004 a 3.57±0.29 a 表 6 二倍体和四倍体苦荞的农艺性状及产量比较
Table 6. Agronomic traits and yield of Tartary buckwheat
品种
Variety株高
Plant height/cm主茎节数
Number of main
stem nodes/个主茎分枝数
Main stem branch
number/个子叶节高度
Cotyledon node
height/cm1~2节节间长度
1-2 internode
length/cm1~2节节间粗度
1-2 internode
thickness/mm充实度
Plumpness/%产量
Yield/(kg·hm−2)E1 112.3±1.3 b 12.2±1.1 b 7.1±1.2 b 1.6±0.1 a 1.7±0.1 b 4.7±0.4 b 74.2±1.4 a 2452.1±102.2 a S1 125.0±1.1 a 17.6±1.1 a 9.6±1.1 a 1.8±0.2 a 3.3±0.2 a 6.3±0.5 a 27.7±0.8 b 2058.1±112.3 b E2 119.4±1.35 b 15.3±1.7 b 5.0±1.0 b 1.7±0.2 a 1.7±0.1 b 4.7±0.4 b 85.2±1.2 a 2305.8±106.3 a S2 127.0±1.0 a 18.2±1.3 a 7.7±1.3 a 1.6±0.2 a 3.0±0.2 a 6.2±0.5 a 26.2±0.7 b 1807.3±99.4 b -
[1] ROUT M K, CHRUNGOO N K, RAO K S. Amino acid sequence of the basic subunit of 13S globulin of buckwheat [J]. Phytochemistry, 1997, 45(5): 865−867. doi: 10.1016/S0031-9422(97)00051-4 [2] LI S Q, ZHANG Q H. Advances in the development of functional foods from buckwheat [J]. Critical Reviews in Food Science and Nutrition, 2001, 41(6): 451−464. doi: 10.1080/20014091091887 [3] 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展 [J]. 贵州师范大学学报(自然科学版), 2018, 36(3):1−7.CHEN Q F. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat [J]. Journal of Guizhou Normal University (Natural Science Edition), 2018, 36(3): 1−7.(in Chinese) [4] HUANG X Y, ZELLER F J, HUANG K F, et al. Variation of major minerals and trace elements in seeds of Tartary buckwheat (Fagopyrum tataricum Gaertn.) [J]. Genetic Resources and Crop Evolution, 2014, 61(3): 567−577. doi: 10.1007/s10722-013-0057-2 [5] 武素平, 鲁纯静. 荞麦面对血脂及脂肪肝影响的动物实验 [J]. 食品科学, 1988, 2(2):10−11.WU S P, LU C J. Animal experiment on the effect of buckwheat on blood lipid and fatty live [J]. Food Science, 1988, 2(2): 10−11.(in Chinese) [6] 宋毓雪, 郭肖, 杨龙云, 等. 不同氮磷钾肥料处理对苦荞籽粒充实度及产量的影响 [J]. 浙江农业学报, 2014, 26(6):1568−1572. doi: 10.3969/j.issn.1004-1524.2014.06.29SONG Y X, GUO X, YANG L Y, et al. Effects of different NPK treatments on the yield and plumpness of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2014, 26(6): 1568−1572.(in Chinese) doi: 10.3969/j.issn.1004-1524.2014.06.29 [7] 黄凯丰, 李振宙, 王炎, 等. 我国荞麦高产栽培生理研究进展 [J]. 贵州师范大学学报(自然科学版), 2019, 37(1):115−120.HUANG K F, LI Z Z, WANG Y, et al. Research progress on physiology of buckwheat under high-yield cultivation [J]. Journal of Guizhou Normal University (Natural Science Edition), 2019, 37(1): 115−120.(in Chinese) [8] 廉立坤, 陈庆富. 二倍体和四倍体苦荞种子蛋白质含量和黄酮含量比较研究 [J]. 种子, 2013, 32(2):1−5. doi: 10.3969/j.issn.1001-4705.2013.02.001LIAN L K, CHEN Q F. A comparative study of seed protein content and seed flavonoid content between diploid and tetraploid Tartary buckwheat [J]. Seed, 2013, 32(2): 1−5.(in Chinese) doi: 10.3969/j.issn.1001-4705.2013.02.001 [9] 李振宙, 吴兴慧, 张余, 等. 钾肥用量对四倍体苦荞籽粒灌浆特性、充实度的影响 [J]. 福建农业学报, 2019, 34(8):883−888.LI Z Z, WU X H, ZHANG Y, et al. Effect of potassium fertilizations on grouting and plumpness of tetraploid Tartary buckwheat grains [J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 883−888.(in Chinese) [10] 赵钢, 唐宇. 同源四倍体苦荞新品系与原种主要性状的比较研究 [J]. 科技通报, 1994, 10(5):321−325.ZHAO G, TANG Y. Comparative study on main characters of a new strain of autotetraploid and its autodiploid parent stock in Tartary buckwheat [J]. Bulletin of Science and Technology, 1994, 10(5): 321−325.(in Chinese) [11] 宋毓雪, 陈小娥, 魏让, 等. 不同肥料配比对甜荞产量和品质的影响 [J]. 中国土壤与肥料, 2014(3):49−53. doi: 10.11838/sfsc.20140310SONG Y X, CHEN X E, WEI R, et al. Effects of different ratios of NPK fertilizer on yield and quality of common buckwheat [J]. Soils and Fertilizers Sciences in China, 2014(3): 49−53.(in Chinese) doi: 10.11838/sfsc.20140310 [12] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析 [J]. 作物学报, 1988, 14(3):182−193. doi: 10.3321/j.issn:0496-3490.1988.03.002ZHU Q S, CAO X Z, LUO Y Q. Growth analysis on the process of grain filling in rice [J]. Acta Agronomica Sinica, 1988, 14(3): 182−193.(in Chinese) doi: 10.3321/j.issn:0496-3490.1988.03.002 [13] 杨志远, 孙永健, 徐徽, 等. 栽培方式与免耕对杂交稻Ⅱ优498灌浆期根系衰老和籽粒灌浆的影响 [J]. 中国农业科学, 2013, 46(7):1347−1358.YANG Z Y, SUN Y J, XU H, et al. Influence of cultivation methods and no-tillage on root senescence at filling stage and grain-filling properties of eryou 498 [J]. Scientia Agricultura Sinica, 2013, 46(7): 1347−1358.(in Chinese) [14] YANG J C, ZHANG J H, WANG Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling [J]. Field Crops Research, 2003, 81(1): 69−81. doi: 10.1016/S0378-4290(02)00214-9 [15] 金成忠, 许德威. 作为根系活力指标的伤流液简易收集法 [J]. 植物生理学通讯, 1959(4):51−53.JIN C Z, XU D W. A simple collection method of injured fluid as an index of root activity [J]. Plant Physiology Journal,, 1959(4): 51−53.(in Chinese) [16] 张志良. 植物生理学实验指导 [M]. 北京: 高等教育出版社, 1990. [17] 张宗文, 林汝法. 荞麦种质资源描述规范和数据标准 [M]. 北京: 中国农业出版社, 2007. [18] 陈磊, 王盛锋, 刘荣乐, 等. 不同磷供应水平下小麦根系形态及根际过程的变化特征 [J]. 植物营养与肥料学报, 2012, 18(2):324−331. doi: 10.11674/zwyf.2012.11229CHEN L, WANG S F, LIU R L, et al. Changes of morphology and rhizosphere processes of wheat under different phosphate supply [J]. Plant Nutrition and Fertilizer Science,, 2012, 18(2): 324−331.(in Chinese) doi: 10.11674/zwyf.2012.11229 [19] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系 [J]. 中国农业科学, 2011, 44(1):36−46. doi: 10.3864/j.issn.0578-1752.2011.01.005YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization [J]. Scientia Agricultura Sinica, 2011, 44(1): 36−46.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.01.005 [20] 潘晓华, 王永锐, 傅家瑞. 水稻根系生长生理的研究进展 [J]. 植物学通报, 1996(2):13−20.PAN X H, WANG Y R, FU J R. Advance in the study on the growth-physiology in rice of root system (Oryza sativa) [J]. Chinese Bulletin of Botany, 1996(2): 13−20.(in Chinese) [21] 张成良, 姜伟, 肖叶青, 等. 水稻根系研究现状与展望 [J]. 江西农业学报, 2006, 18(5):23−27. doi: 10.3969/j.issn.1001-8581.2006.05.009ZHANG C L, JIANG W, XIAO Y Q, et al. Status and prospects of research on rice root systems [J]. Acta Agriculturae Jiangxi, 2006, 18(5): 23−27.(in Chinese) doi: 10.3969/j.issn.1001-8581.2006.05.009 [22] 杨建昌, 徐国伟, 仇明, 等. 新株型水稻生育特性及产量形成特点的研究 [J]. 扬州大学学报(农业与生命科学版), 2002, 23(1):45−50.YANG J C, XU G W, QIU M, et al. Growth and development characteristics and yield formation of new plant type rice [J]. Journal of Yangzhou University (Agricultural and Life Sciences Edition), 2002, 23(1): 45−50.(in Chinese) [23] SAMEJIMA H, KONDO M, ITO O, et al. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines [J]. Journal of Plant Nutrition, 2005, 28(5): 835−850. doi: 10.1081/PLN-200055550 [24] 蔡昆争, 骆世明, 段舜山. 水稻根系在根袋处理条件下对氮养分的反应 [J]. 生态学报, 2003, 23(6):1109−1116. doi: 10.3321/j.issn:1000-0933.2003.06.011CAI K Z, LUO S M, DUAN S S. The response of the rice root system to nitrogen conditions under-root confinement [J]. Acta Ecologica Sinica, 2003, 23(6): 1109−1116.(in Chinese) doi: 10.3321/j.issn:1000-0933.2003.06.011 [25] 刘文兆, 李秧秧. 断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题 [J]. 西北植物学报, 2003, 23(8):1320−1324. doi: 10.3321/j.issn:1000-4025.2003.08.002LIU W Z, LI Y Y. Effect of crop root-cutting on grain yield and water use efficiency: a review [J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(8): 1320−1324.(in Chinese) doi: 10.3321/j.issn:1000-4025.2003.08.002 [26] 蔡永萍, 杨其光, 黄义德. 水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响 [J]. 中国水稻科学, 2000, 14(4):219−224. doi: 10.3321/j.issn:1001-7216.2000.04.006CAI Y P, YANG Q G, HUANG Y D. Effect of rice cultivated under paddy and upland condition on photosynthesis and senescence of flag leaf and activity of root system after heading [J]. Chinese Journal of Rice Science, 2000, 14(4): 219−224.(in Chinese) doi: 10.3321/j.issn:1001-7216.2000.04.006 [27] LIANG C G, SONG Y X, GUO X, et al. Characteristics of the grain-filling process and starch accumulation of high-yield common buckwheat ‘cv. Fengtian 1’ and Tartary buckwheat ‘cv. Jingqiao 2’ [J]. Cereal Research Communications, 2016, 44(3): 393−403. doi: 10.1556/0806.44.2016.005 [28] WANG Y, SONG Y X, ZHANG Y, et al. Characteristics of starch synthesis and grain filling of common buckwheat [J]. Journal of Cereal Science, 2017, 73: 116−121. doi: 10.1016/j.jcs.2016.12.008 [29] 陈昱利, 张海军, 葛道阔, 等. 小麦籽粒灌浆速率的模拟 [J]. 江苏农业学报, 2014, 30(3):480−485. doi: 10.3969/j.issn.1000-4440.2014.03.004CHEN Y L, ZHANG H J, GE D K, et al. Simulation of grain filling rate for wheat [J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(3): 480−485.(in Chinese) doi: 10.3969/j.issn.1000-4440.2014.03.004 [30] STEADMAN K J, BURGOON M S, LEWIS B A, et al. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions [J]. Journal of the Science of Food and Agriculture, 2001, 81(11): 1094−1100. doi: 10.1002/jsfa.914 [31] NAKAMURA Y, YUKI K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm [J]. Plant Science, 1992, 82(1): 15−20. doi: 10.1016/0168-9452(92)90003-5 [32] JENG T L, WANG C S, CHEN C L, et al. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant [J]. The Journal of Agricultural Science, 2003, 141(3/4): 303−311. [33] 刘立军, 王志琴, 杨建昌, 等. 亚种间杂交稻籽粒灌浆特性及其生理机制 [J]. 扬州大学学报(自然科学版), 2000, 3(3):35−40.LIU L J, WANG Z Q, YANG J C, et al. Grain-filling characteristics and physiological mechanism of intersubspecific hybrid rice [J]. Journal of Yangzhou University (Natural Science Edition), 2000, 3(3): 35−40.(in Chinese) [34] 付景, 徐云姬, 陈露, 等. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系 [J]. 中国水稻科学, 2012, 26(3):302−310.FU J, XU Y J, CHEN L, et al. Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice [J]. Chinese Journal of Rice Science, 2012, 26(3): 302−310.(in Chinese)