Effect of Long-term Biogas Slurry Application on Fungal Community in Rhizosphere Soil at Areca Taro Fields
-
摘要:
目的 探究施用沼液对槟榔芋根际土壤真菌群落多样性的影响,为沼液更好的还田利用提供理论依据。 方法 采集连续施用沼液6年和未施用沼液的槟榔芋种植地块土壤,通过Illumina Miseq高通量测序平台,分析土壤真菌群落多样性、组成及其与土壤理化性质间的关系,揭示影响真菌群落的主要土壤因子。 结果 与未施用沼液土壤比较,连续施用沼液6年的土壤有机质、碱解氮和速效钾含量都有明显提高。连续施用沼液后土壤真菌物种OTUs数量、群落丰富度指数和多样性指数也明显增加。真菌门水平鉴定出子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)、球囊菌门(Glomeromycota)等类群,其中子囊菌门为土壤中丰富度最高的真菌类群。连续施用沼液明显增加了被孢霉门中被孢霉纲的相对丰度,而球囊菌门中球囊菌纲则大幅减少;连续施用沼液后土壤真菌属水平优势类群也发生明显改变。冗余分析结果表明,引起土壤真菌群落多样性变化最主要的环境因子为碱解氮、速效钾和有机质。 结论 长期施用沼液改变了槟榔芋根际土壤真菌所处的微环境,进而导致其群落组成和多样性发生变化。 Abstract:Objective Effect of long-term biogas slurry application on the diversity of fungal community in rhizosphere soil at areca taro fields was studied. Method The taro planting plots that had been continuously fertilized with biogas slurry in the past 6 years were sampled to compare with areas without such treatment as control. Using the Illumina Miseq high-throughput sequencing platform, relationship between the fungal community and physicochemical characteristics of the soil was analyzed. Result The contents of organic matters, alkaline nitrogen, and available potassium in the soil were significantly increased by the continuous biogas slurry application. The fungal species OUT, community richness, and diversity at the sites also increased significantly. At phylum level, Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, etc. were identified in the soils, with Ascomycota being the most abundant. After 6-year biogas slurry application, the relative abundance of Mortierellomycetes in Mortierellomycota increased significantly, while that of Glomeromycetes in Glomeromycota decreased significantly in the soil. The dominant fungi at genus level were also changed significantly from control. The redundancy analysis indicated that the major factors affecting the change of fungal community diversity in soil included alkaline nitrogen, available potassium, and organic matters. Conclusion Long-term biogas slurry fertilization altered the soil microenvironment leading to changes in the composition and diversity of rhizosphere fungal community. -
表 1 不同施肥方式土壤理化性质
Table 1. Physicochemical characteristics of soil under varied fertilizations
样品编号
Samples IDpH 有机质
Organic matter/(g·kg−1)碱解氮
Alkali-hydrolysis N/(mg·kg−1)速效磷
Available P/(mg·kg−1)速效钾
Available K/(mg·kg−1)CK 5.29±0.01a 38.02±0.06b 229±0.28b 31.59±0.25a 190±0.76b BS 5.27±0.0a 39.61±0.01a 254±2.47 a 30.17±0.10a 283±2.09a 注:CK,未施用沼液土壤;BS,沼液施肥6年土壤;同列数据后不同小写字母表示处理间在0.05水平差异显著,表2同。
Note: CK, Soil with no biogas fertilization; BS, Soil with 6-year biogas slurry fertilization; Data with different lowercase letters on same column indicate significant difference among treatments at 0.05 level. Same for Table 2.表 2 不同施肥方式土壤真菌多样性分析
Table 2. Fungal diversity in soil under varied fertilizations
样品编号 Samples ID Chao1 Observed species PD whole tree Shannon CK 1 623±14.72b 1 252±18.88b 248±2.14b 6.72±0.26a BS 2 116±57.86a 1 582±66.11a 305±6.34a 6.87±0.23a -
[1] 张东, 徐甦, 陈斌, 等. 畜禽粪便沼气工程处理技术 [J]. 浙江农业科学, 2012(2):223−227.ZHANG D, XU S, CHEN B, et al. Treatment method of livestock manure via biogas project [J]. Journal of Zhejiang Agricultural Sciences, 2012(2): 223−227.(in Chinese [2] ZIRKLER D, PETERS A, KAUPENJOHANN M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion [J]. Biomass and Bioenergy, 2014, 67: 89−98. doi: 10.1016/j.biombioe.2014.04.021 [3] 王国海, 翟静. 沼液对土壤改良的作用 [J]. 北京农业, 2015 (3): 93.WANG G H, ZHAI J. The effects of biogas slurry on soil improvements[J]. Beijing Agriculture, 2015 (3): 93. (in Chinese). [4] 曾锦, 徐锐, 梁高飞, 等. 畜禽养殖废弃物资源化利用技术及推广模式研究进展 [J]. 畜牧与饲料科学, 2018, 39(8):56−63.ZENG J, XU R, LIANG G F, et al. Research advances on the resource recycling technology and extension model of livestock and poultry wastes [J]. Animal Husbandry and Feed Science, 2018, 39(8): 56−63.(in Chinese [5] NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54(4): 655−670. doi: 10.1046/j.1351-0754.2003.0556.x [6] 郑学博, 樊剑波, 崔键, 等. 沼液还田对旱地红壤微生物群落代谢与多样性的影响 [J]. 生态学报, 2016, 36(18):5865−5875.ZHENG X B, FAN J B, CUI J, et al. Analysis on metabolic characteristics and functional diversity of soil edaphon communities in upland red soil under biogas slurry application [J]. Acta Ecologica Sinica, 2016, 36(18): 5865−5875.(in Chinese [7] 冯丹妮, 伍钧, 杨刚, 等. 连续定位施用沼液对水旱轮作耕层土壤微生物区系及酶活性的影响 [J]. 农业环境科学学报, 2014, 33(8):1644−1651.FENG D N, WU J, YANG G, et al. Influence of long-term applications of biogas slurry on microbial community composition and enzymatic activities in surface soil under rice-rape rotation [J]. Journal of Agro-Environment Science, 2014, 33(8): 1644−1651.(in Chinese [8] 朱金山, 张慧, 马连杰, 等. 不同沼灌年限稻田土壤微生物群落分析 [J]. 环境科学, 2018, 39(5):2400−2411.ZHU J S, ZHANG H, MA L J, et al. Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumina sequencing technology [J]. Environmental Science, 2018, 39(5): 2400−2411.(in Chinese [9] 张晶, 张惠文, 李新宇, 等. 土壤真菌多样性及分子生态学研究进展 [J]. 应用生态学报, 2004, 15(10):1958−1962.ZHANG J, ZHANG H W, LI X Y, et al. Research advances in soil fungal diversity and molecular ecology [J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1958−1962.(in Chinese [10] HARRIS J. Soil microbial communities and restoration ecology: Facilitators or followers? [J]. Science, 2009, 325(5940): 573−574. doi: 10.1126/science.1172975 [11] 张无敌, 尹芳, 徐锐, 等. 沼液对土壤生物学性质的影响 [J]. 湖北农业科学, 2009, 48(10):2403−2407.ZHANG W D, YIN F, XU R, et al. Effect of biogas liquid on biological properties of soil [J]. Hubei Agricultural Sciences, 2009, 48(10): 2403−2407.(in Chinese [12] 左狄, 吕卫光, 李双喜, 等. 沼液还田对稻田土壤养分与氮循环微生物的影响 [J]. 上海农业学报, 2018, 34(2):55−59.ZUO D, LÜ W G, LI S X, et al. Effects of biogas slurry on soil nutrients and nitrogen cycling microorganism in paddy field [J]. Acta Agriculturae Shanghai, 2018, 34(2): 55−59.(in Chinese [13] 冯丹妮, 伍钧, 杨虎德. 连续施用沼液水稻油菜轮作耕层土壤的细菌多样性 PCR-DGGE分析 [J]. 甘肃农业科技, 2019(8):41−49.FENG D N, WU J, YANG H D. Bacterial diversity in topsoil of continuous application of biogas slurry rice-rape rotation analysised using PCR-DGGE [J]. Gansu Agricultural Science and Technology, 2019(8): 41−49.(in Chinese [14] JOSE J, GIRIDHAR R, ANAS A, et al. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India [J]. Environmental Pollution, 2011, 159(10): 2775−2780. doi: 10.1016/j.envpol.2011.05.009 [15] 宋三多. 沼肥施用对成都平原稻麦轮作制作物生长及土壤微生物特性影响 [D]. 雅安: 四川农业大学, 2017.SONG S D. Effects of biogas manure on crop growth and soil microbial properties under rice-wheat rotation system in Chengdu plain [D]. Yaan, China: Sichuan Agricultural University, 2017. (in Chinese). [16] DING H Y, ALI A, CHENG Z H. Dynamics of a soil fungal community in a three-year green garlic/cucumber crop rotation system in northwest China [J]. Sustainability, 2018, 10(5): 1391. doi: 10.3390/su10051391 [17] 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响 [J]. 菌物学报, 2019, 38(11):1992−2006.LI M, YAN W. Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain, China [J]. Mycosystema, 2019, 38(11): 1992−2006.(in Chinese [18] AL-SADI A M, AL-MAZROUI S S, PHILLIPS A J L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers [J]. Journal of Applied Microbiology, 2015, 119(2): 500−509. doi: 10.1111/jam.12854 [19] 张岩, 邓娇娇, 朱文旭, 等. 辽西北风沙区典型人工防护林土壤微生物群落功能特征 [J]. 生态学杂志, 2019, 38(6):1688−1696.ZHANG Y, DENG J J, ZHU W X, et al. Functional characteristics of soil microbial community of the typical artificial shelter forests in the windy-sandy region of northwest Liaoning Province, China [J]. Chinese Journal of Ecology, 2019, 38(6): 1688−1696.(in Chinese [20] 徐雪雪, 王东, 秦舒浩, 等. 沟垄覆膜连作马铃薯根际土壤真菌多样性分析 [J]. 水土保持学报, 2015, 29(6):301−306, 310.XU X X, WANG D, QIN S H, et al. Diversity analysis of fungal communities in potato continuous cropping soil under different patterns of ridge-furrow film mulching [J]. Journal of Soil and Water Conservation, 2015, 29(6): 301−306, 310.(in Chinese [21] 季凌飞, 倪康, 马立锋, 等. 不同施肥方式对酸性茶园土壤真菌群落的影响 [J]. 生态学报, 2018, 38(22):8158−8166.JI L F, NI K, MA L F, et al. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil [J]. Acta Ecologica Sinica, 2018, 38(22): 8158−8166.(in Chinese [22] LI J, COOPER J, LIN Z, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain [J]. Applied Soil Ecology, 2015, 96: 75−87. doi: 10.1016/j.apsoil.2015.07.001 [23] HUHE, CHEN X J, HOU F J, et al. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities [J]. Frontiers in Microbiology, 2017(8): 606. doi: 10.3389/fmicb.2017.00606 [24] 陈浩, 魏立本, 王亚麒, 等. 烤烟不同种植施肥模式对土壤养分、酶活性及细菌多样性的影响 [J]. 南方农业学报, 2019, 50(5):982−989.CHEN H, WEI L B, WANG Y Q, et al. Effects of different planting and fertilizing modes on soil nutrient, enzyme activity and bacterial diversity of tobacco [J]. Journal of Southern Agriculture, 2019, 50(5): 982−989.(in Chinese [25] 冯翠娥, 岳思君, 简阿妮, 等. 硒砂瓜连作对土壤真菌群落结构的影响 [J]. 中国生态农业学报(中英文), 2019, 27(4):537−544.FENG C E, YUE S J, JIAN A, et al. The effect of continuous cropping of selenium melon on soil fungal community structure [J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 537−544.(in Chinese [26] 武俊男, 刘昱辛, 周雪, 等. 基于Illumina MiSeq测序平台分析长期不同施肥处理对黑土真菌群落的影响 [J]. 微生物学报, 2018, 58(9):1658−1671.JUNNAN W, YUXIN L, XUE Z, et al. Effects of long-term different fertilization on soil fungal communities in black soil based on the Illumina Mi Seq platform [J]. Acta Microbiologica Sinica, 2018, 58(9): 1658−1671.(in Chinese [27] LIU J J, SUI Y Y, YU Z H, et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China [J]. Soil Biology & Biochemistry, 2015, 83: 29−39. [28] LUO P Y, HAN X R, WANG Y, et al. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China [J]. Annals of Microbiology, 2015, 65(1): 533−542. doi: 10.1007/s13213-014-0889-9 [29] WRIGHT S H A, BERCH S M, BERBEE M L. The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla) [J]. Mycorrhiza, 2009, 19(4): 267−276. doi: 10.1007/s00572-008-0218-x [30] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录 [J]. 菌物学报, 2017, 36(7):820−850.WANG Y S, LIU R J. a checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota [J]. Mycosystema, 2017, 36(7): 820−850.(in Chinese [31] 熊冬梅, 周红丽. 纤维素降解菌群的研究进展 [J]. 酿酒科技, 2011(5):94−97.XIONG D M, ZHOU H L. Research progress in cellulose-degrading bacteria community [J]. Liquor-Making Science & Technology, 2011(5): 94−97.(in Chinese