Effects of AMF and Organic Fertilizer on N-transformation and Microbial N-cycling Genes in Rhizosphere Soil of Sweet Corn Field
-
摘要:
目的 研究丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)配施有机肥对甜玉米根际土壤氮素转化及氮循环微生物功能基因的影响,明晰AMF配施有机肥对甜玉米-土壤氮循环的微生物学过程,为氮肥利用率提高、化学氮肥减施增效提供技术支撑。 方法 采用大田区组试验,在磷(P2O5 150 kg·hm-2)、钾(K2O 225 kg·hm-2)施肥水平一致的基础上设计7个施肥处理:(1)不施氮肥(CK);(2)优化施肥(OF);(3)有机氮肥替代10%化学氮肥(ORF10);(4)有机氮肥替代20%化学氮肥(ORF20);(5)有机氮肥替代10%化学氮肥+增施变形球囊霉(Glomus versiforme)(ORF10+AMF);(6)有机氮肥替代20%化学氮肥+增施变形球囊霉(ORF20+AMF);(7)不施氮肥+增施变形球囊霉(CK+AMF);每个处理3次重复。应用土壤常规理化指标分析方法和微生物功能基因芯片(GeoChip 5.0)技术,对不同施肥处理的甜玉米氮素利用率、氮代谢相关酶活性及氮循环功能基因进行分析。 结果 增施变形球囊霉能显著提高氮利用率。变形球囊霉配施有机肥对氮肥农学效率(NAE)、氮肥偏生产力(PFP)、氮肥吸收利用率(NRE)、硝酸还原酶(NR)、谷氨酸合酶(GOGAT)和谷氨酰胺合成酶(GS)活性具有极显著的正交互效应(P<0.001)。在所有处理中ORF20+AMF处理土壤氮素利用效率最高,农学效率(NAE)、氮肥偏生产力(PFP)、氮肥吸收利用率(NRE)、氮素生理利用率(NPE)较OF处理分别提高31.15%、28.08%、6.95%、10.41%。在氮循环微生物功能基因中,增施变形球囊霉处理组(ORF10+AMF、ORF20+AMF)NiR、narB、nasA、nirA、nirB、napA、nrfA、nifH、ureC基因相对强度显著高于对应未施菌处理组(ORF10、ORF20),ORF20+AMF处理的氨氧化基因hzo相对丰度比ORF20处理降低了20%,减少了氮素由N2释放途径损失的可能。 结论 增施变形球囊霉配施有机肥可显著调增同化氮还原基因(NiR、narB、nasA、nirA、nirB)、异化氮还原基因(napA、nrfA)、氮固定基因(nifH)、氨化作用基因(ureC)相对强度,降低硝化基因(hao)和氨氧化基因(hzo)相对丰度,驱动土壤氮素循环向植物氮高效利用的途径转化,提高氮肥农学效率(NAE)、氮肥偏生产力(PFP)、氮肥吸收利用率(NRE)和根系氮代谢酶活性,实现甜玉米化学氮肥减施增效的目标。 Abstract:Objective Effects of AMF and organic fertilizer on nitrogen (N) transformation and microbial N-cycling gene in rhizosphere soil at sweet corn field were studied to improve the fertilization practice. Method In a field experiment, sweet corn was planted under various fertilization treatments, and the N-transformation between the plants and the soil monitored. The high-throughput sequencing platform, GeoChip 5.0, was used to determine the microbial community structure and N-cycling genes. Upon the base fertilization of P2O5 150 kg·hm-2 and K2O 225 kg·hm-2, 7 modifications were applied with 3 replicates for the soil treatments: (1) no N addition (CK), (2) optimized fertilization (OF), (3) organic N replacing 10% chemical N (ORF10), (4) organic N replacing 20% chemical N (ORF20), (5) ORF10 inoculated with Glomus versiforme (ORF10+AMF), (6) ORF20 inoculated with G. versiforme (ORF20+AMF), and, (7) CK inoculated with G. versiforme (CK+AMF). The physical and chemical analyses were performed on the plant and soil samples, and GeoChip 5.0 analyzed the community structure and N-cycling genes of the microbes in the rhizosphere soil under different treatments. Result The inoculation of G. versiforme in soil significantly increased the N utilization efficiency by the sweet corn plants as well as the activity of N metabolizing enzymes in the rhizosphere microorganisms. When AMF inoculation combined with organic N fertilization, significant effects were observed on increases of the efficiency of N fertilizer (NAE), partial productivity of N fertilizer (PFP), and absorption and utilization efficiency of N fertilizer (NRE) between the plants and the soil, as well as the activities of nitrate reductase (NR), glutamic acid synthetase (GOGAT), and glutamine synthetase (GS) in the microbes. Among all treatments, ORF20+AMF improved the N utilization by the plants the greatest—NAE, PFP, NRE, and NPE rose by 31.15%, 28.08%, 6.95%, and 10.41%, respectively, over those under OF. The relative signal intensities of NiR, narB, nasA, nirA, nirB, napA, nrfA, nifH, and ureC in ORF10+AMF or ORF20+AMF were significantly higher than those in ORF10 or ORF20. That of hzo in ORF 20+AMF , in contrast, decreased by 20% compared with ORF20, which inviably caused a decreased N release by ways of N2. Conclusion The presence of AMF in soil enhanced the relative signal intensities of assimilating nitrogen reducing gene NiR, narB, nasA, nirA, and nirB, the N-reducing napA and nrfA , N-fixing nifH , ammonifying ureC, improved the NAE, PFP, and NRE, and increased the microbial N metabolizing enzyme activities. Meanwhile, the declined signal intensities on nitrifying hao, and ammoxidating hzo augmented the N-transformation from soil to plant. The application of AMF and organic fertilizer could, hence, be a promising approach to mitigate the dependency on chemical N fertilizer while promoting the crop yield of sweet corn in the field. -
Key words:
- nitrogen cycle /
- nitrogen transformation /
- Glomus versiforme /
- rhizosphere microbial community /
- GeoChip
-
图 4 不同施肥处理间氮代谢功能基因丰度的变化
注:括号中指示了根际土N基因丰度的百分比变化。以增施变形球囊霉处理为准,基因丰度增加用红色标记;降低用绿色标记;其中*、**、***分别表示在0.05、0.01、0.001水平存在显著差异。此处使用的GeoChip版本没有将灰色基因作为目标,也没有发现或未发现未注释。
Figure 4. Changes in abundance of N-metabolizing genes in soil microbes under treatments
Note: The percentage change of N gene abundance in rhizosphere soil is indicated in parentheses. Subject to the treatment of increased application of cystic mildew, the gene abundance is increased and marked with red; the decrease is marked with green; the *, **, *** indicate significant difference at 0.05, 0.01, 0.001 level, respectively. The version of GeoChip used here does not target the gray gene, nor has it been found or found. Found uncommented.
表 1 不同处理间施肥方案
Table 1. Fertilization treatments
处理
Treatment施肥用量 Fertilization schemes/(kg·hm−2) N P2O5 K2O 有机肥 Organic fertilizer CK,不施氮肥 0 150 225 0 OF,优化施肥 330 150 225 0 ORF10,有机氮肥替代10%化学氮肥 297 150 225 1650 ORF20,有机氮肥替代20%化学氮肥 264 150 225 3300 ORF10+AMF,有机氮肥替代10%化学氮肥+增施变形球囊霉(G. versiforme) 297 150 225 1650 ORF20+AMF,有机氮肥替代20%化学氮肥+增施变形球囊霉(G. versiforme) 264 150 225 3300 CK+AMF,不施氮肥+增施变形球囊霉(G. versiforme) 0 150 225 0 表 2 不同施肥处理对甜玉米孢子量、侵染率、侵染密度的影响
Table 2. Spore quantity, infection rate, and infection density on sweet corn under treatments
处理 Treatment 孢子密度 Spore density/(个·g−1) 侵染率 Colonization/% 侵染强度 Colonization intensity/% CK 7.13±0.32 c 58.00±6.00 c 22.50±0.64 e OF 12.98±0.39 c 64.67±4.73 bc 26.92±0.37 d ORF10 11.58±0.24 c 65.33±4.16 bc 28.87±0.76 d ORF20 7.63±1.29 c 66.00±2.65 bc 28.65±2.65 d ORF10+AMF 19.64±3.99 b 74.67±9.29 ab 41.56±2.02 b ORF20+AMF 29.25±8.17 a 68.67±1.15 b 38.13±3.18 c CK+AMF 24.53±0.45 ab 81.00±5.00 a 45.34±0.56 a 显著性 Significance P值 P Value AMF <0.001 <0.001 <0.001 有机无机配施(ORF) 0.378 0.668 0.282 AMF×ORF 0.025 0.019 <0.001 注:同列数据后不同小写字母表示处理间差异显著性(P<0.05)。数据为均值±标准误。
Note: Different lowercase in each column indicates significant difference among different treatments(P<0.05). Values represent the mean±standard error.表 3 不同施肥处理甜玉米氮利用率
Table 3. Nutilization efficiency of sweet corn under treatments
处理 Treatment 氮肥农学效率 NAE/(kg·kg−1) 氮肥偏生产力 PFP/(kg·kg−1) 氮肥吸收利用率 NRE/% 氮素生理利用率 NPE/(kg·kg−1) CK - - - - OF 27.31±2.36 b 49.39±1.79 b 37.80±2.23 b 72.39±7.17 ab ORF10 19.74±2.89 c 44.28±2.17 c 31.23±1.92 c 63.00±5.22 b ORF20 23.98±1.05 bc 51.58±0.20 b 33.64±1.92 bc 71.53±7.04 ab CK+AMF - - - 69.46±12.12 a ORF10+AMF 26.67±3.32 b 51.21±2.89 b 36.39±1.58 bc 73.16±6.90 ab ORF20+AMF 35.53±2.75 a 63.13±3.13 a 44.75±5.59 a 79.82±6.32 a 显著性 Significance P值 P Value AMF <0.001 <0.001 0.002 0.037 有机无机配施(ORF) 0.003 <0.001 0.020 0.074 AMF×ORF 0.170 0.133 0.147 0.807 表 4 不同施肥处理甜玉米根内系氮代谢相关的酶活性
Table 4. Activity of microbial N metabolizing enzymes in sweet corn under treatments
处理
Treatment硝酸还原酶
NR/(U·g−1)亚硝酸还原酶
NiR/(μmol·h−1·g−1)谷氨酰胺合成酶
GS/(U·g−1)谷氨酸合酶
GOGAT/(nmol·min−1·g−1)CK 11.04±0.74 c 7.13±0.40 b 5.30±0.12 b 82.05±0.62 b OF 11.30±1.17 c 9.19±0.66 a 6.58±0.43 a 82.63±8.54 b ORF10 18.04±1.40 a 8.30±1.11 ab 5.27±0.46 bc 91.55±8.04 b ORF20 15.49±1.26 b 8.37±1.52 ab 4.66±0.53 bc 102.29±3.93 a ORF10+AMF 10.64±1.26 c 7.71±0.59 ab 4.62±0.33 c 92.20±4.21 b ORF20+AMF 5.55±0.64 d 8.02±0.55 ab 6.06±0.25 a 82.24±5.64 b CK+AMF 10.07±1.13 c 8.56±0.68 ab 3.79±0.19 c 41.20±1.06 c 显著性 Significance P 值P Value AMF <0.001 0.704 0.149 <0.001 有机无机配施(ORF) <0.001 0.793 0.006 <0.001 AMF×ORF <0.001 0.145 <0.001 <0.001 表 5 不同施肥处理间微生物氮循环功能基因不相似性检验
Table 5. Dissimilarity test on microbial N-cycling genes under treatments
不相似性检验
Dissimilarity testδ或R P值
P valueMRPP δ=0.169 <0.001 Anosim R=0.979 <0.001 Adonis R=0.859 <0.001 -
[1] 高磊, 李余良, 李武, 等. 不同施氮水平对南方甜玉米氮素吸收利用的影响 [J]. 植物营养与肥料学报, 2017, 23(5):1215−1224.GAO L, LI Y L, LI W, et al. Effects of nitrogen application on yields and nitrogen use efficiencies of sweet corn in South China [J]. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1215−1224.(in Chinese [2] 程昕昕, 吴翔, 熊风, 等. 子粒发育过程中糖分转化量对Sh2甜玉米种子活力的影响 [J]. 玉米科学, 2019, 27(5):81−86.CHENG X X, WU X, XIONG F, et al. Effects of sugar of Sh2 sweet-corn on seed vigor during development [J]. Journal of Maize Sciences, 2019, 27(5): 81−86.(in Chinese [3] 刘馨芬. 广东省甜玉米产业发展现状与对策研究[D]. 广州: 仲恺农业工程学院, 2016.LIU X F. The industry status and development countermeasures of sweet corn in Guangdong province[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2016.(in Chinese) [4] 杨小梅, 刘树伟, 秦艳梅, 等. 中国玉米化学氮肥利用率的时空变异特征 [J]. 中国生态农业学报, 2013, 21(10):1184−1192. doi: 10.3724/SP.J.1011.2013.01184YANG X M, LIU S W, QIN Y M, et al. Spatiotemporal distribution characteristics of synthetic nitrogen fertilizer use efficiency in maize fields in China [J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1184−1192.(in Chinese doi: 10.3724/SP.J.1011.2013.01184 [5] 张淑娟, 王立, 马放, 等. 丛枝菌根(AM)对水稻生长促进及化肥减量研究 [J]. 哈尔滨工业大学学报, 2010, 42(6):958−962.ZHANG S J, WANG L, MA F, et al. Application of arbuscular mycorrhiza on promoting the growth of rice and reducing the usage of chemical fertilizer [J]. Journal of Harbin Institute of Technology, 2010, 42(6): 958−962.(in Chinese [6] 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用 [J]. 生态学报, 2014, 34(17):4807−4815.CHEN Y L, CHEN B D, LIU L, et al. The role of arbuscular mycorrhizal fungi in soil nitrogen cycling [J]. Acta Ecologica Sinica, 2014, 34(17): 4807−4815.(in Chinese [7] 薛玉晨, 郝鲜俊, 韩阳, 等. 不同有机肥对矿区复垦土壤氮素矿化的影响 [J]. 应用与环境生物学报, 2020, 26(2):378−385.XUE Y C, HAO X J, HAN Y, et al. Effects of different organic fertilizers on the mineralization of nitrogen in a mine reclaimed soil [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 378−385.(in Chinese [8] 李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响 [J]. 植物营养与肥料学报, 2019, 25(10):1669−1678.LI Y Q, WEN Y C, LIN Z A, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility [J]. Plant Nutrition and Fertilizer Science, 2019, 25(10): 1669−1678.(in Chinese [9] ZHANG J B, ZHU T, CAI Z, et al. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations [J]. European Journal of Soil Science, 2012, 63(1): 75−85. doi: 10.1111/j.1365-2389.2011.01410.x [10] LUXHØI J, ELSGAARD L, THOMSEN I K, et al. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes [J]. Soil Use and Management, 2007, 23(4): 368−373. doi: 10.1111/j.1475-2743.2007.00126.x [11] SØRENSEN P. Immobilisation, remineralisation and residual effects in subsequent crops of dairy cattle slurry nitrogen compared to mineral fertiliser nitrogen [J]. Plant and Soil, 2004, 267(1/2): 285−296. [12] 陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制 [J]. 应用生态学报, 2020, 31(3):1033−1042.CHEN X B, HU Y J, QIN H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review [J]. Chinese Journal of Applied Ecology, 2020, 31(3): 1033−1042.(in Chinese [13] CHENG Y, CAI Z C, CHANG S X, et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem [J]. Biology and Fertility of Soils, 2012, 48(8): 941−946. doi: 10.1007/s00374-012-0687-0 [14] ZHANG J B, SUN W J, ZHONG W H, et al. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils [J]. Soil Biology and Biochemistry, 2014, 76: 143−148. doi: 10.1016/j.soilbio.2014.05.001 [15] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806. doi: 10.1038/nature04983 [16] 赵乾旭, 岳献荣, 夏运生, 等. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响 [J]. 作物杂志, 2016(5):94−100.ZHAO Q X, YUE X R, XIA Y S, et al. Effects of arbuscular mycorrhizal fungus inoculation on growth and nitrogen utilization of intercropped maize and soybean in purple soil under facilitated condition [J]. Crops, 2016(5): 94−100.(in Chinese [17] 刘铭铭, 李衍素, 孙锦, 等. 两种丛枝菌根真菌扩繁比较及其对玉米促生的研究 [J]. 农业科技通讯, 2018(4):63−67.LIU M M, LI Y S, SUN J, et al. Comparison of two arbuscular mycorrhizal fungi and their effects on maize growth [J]. Bulletin of Agricultural Science and Technology, 2018(4): 63−67.(in Chinese [18] 李芳, 徐丽娇, 谢伟, 等. 菌根化育苗对玉米生长和养分吸收的影响 [J]. 植物营养与肥料学报, 2020, 26(1):42−50.LI F, XU L J, XIE W, et al. Effects of seedling mycorrhization on the growth and nutrient uptake of maize [J]. Plant Nutrition and Fertilizer Science, 2020, 26(1): 42−50.(in Chinese [19] 毕银丽, 孙欢, 郭楠, 等. 不同基质和菌种组合对丛枝菌根真菌扩繁效果的影响 [J]. 应用与环境生物学报, 2017, 23(4):616−621.BI Y L, SUN H, GUO N, et al. Propagate-effects of different substrates and strain combinations on rbuscular mycorrhizal fungi [J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(4): 616−621.(in Chinese [20] ZHAO Y P, LIN S, CHU L, et al. Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla [J]. Scientific Reports, 2016, 6(1): 26175. doi: 10.1038/srep26175 [21] 周葱. 缺铁黄化对‘砀山酥梨’叶片光合特性、氮代谢相关酶活性及基因表达的影响[D]. 合肥: 安徽农业大学, 2015.ZHOU C. Effects of iron stress on photosynthetic characters, related enzyme activity and genes expression of nitrogen metabolism in Dangshansuli leaves[D]. Hefei: Anhui Agricultural University, 2015.(in Chinese) [22] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1999. [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [24] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970, 55(1): 158−1618. doi: 10.1016/S0007-1536(70)80110-3 [25] GERDEMANN J W, NICOLSON T H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting [J]. Transactions of the British Mycological Society, 1963, 46(2): 235−244. doi: 10.1016/S0007-1536(63)80079-0 [26] 鲁艳红, 聂军, 廖育林, 等. 不同控释氮肥减量施用对双季水稻产量和氮素利用的影响 [J]. 水土保持学报, 2016, 30(2):155−161, 174.LU Y H, NIE J, LIAO Y L, et al. Effects of application reduction of controlled release nitrogen fertilizer on yield of double cropping rice and nitrogen nutrient uptake [J]. Journal of Soil and Water Conservation, 2016, 30(2): 155−161, 174.(in Chinese [27] 黄巧义, 唐拴虎, 张发宝, 等. 控释尿素与常规尿素配施比例对甜玉米产量和氮肥利用的影响 [J]. 植物营养与肥料学报, 2017, 23(3):622−631.HUANG Q Y, TANG S H, ZHANG F B, et al. Effect of the blending ratio of controlled-release urea and conventional urea on yield and nitrogen utilization efficiency of sweet corn [J]. Plant Nutrition and Fertilizer Science, 2017, 23(3): 622−631.(in Chinese [28] TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d’un systemeradiculaire. Recherche de methods destimationayantune signification fonctionnelle [J]. Physiological and Genetical Aspects of Mycorrhizae, Inra, Paris, 1986: 217−221. [29] 梁元振. 有机无机肥配施对土壤微生物学特征及肥力的影响[D]. 哈尔滨: 东北农业大学, 2017.LIANG Y Z. Effects of manure combined with inorganic fertilizer on the characteristic of soil microbiology and fertility[D]. Harbin: Northeast Agricultural University, 2017.(in Chinese) [30] 何跃军, 杜照奎, 吴长榜, 等. 喀斯特土壤接种AM菌剂对光皮树幼苗形态特征和生物量分配的影响 [J]. 西南大学学报(自然科学版), 2012, 34(10):35−40.HE Y J, DU Z K, WU C B, et al. Effects of AMF inoculation on morphological characteristics and biomass allocation of Cornus wilsoniana seedlings growing in karst soil [J]. Journal of Southwest Agricultural University, 2012, 34(10): 35−40.(in Chinese [31] 裘浪, 毕银丽, 江彬, 等. 覆膜与接种AM真菌对半干旱区玉米根际土壤理化性质的影响 [J]. 菌物学报, 2017, 36(7):904−913.QIU L, BI Y L, JIANG B, et al. Effects of plastic film mulching and inoculation with AM fungi on soil physicochemical properties of maize rhizosphere in semiarid areas [J]. Mycosystema, 2017, 36(7): 904−913.(in Chinese [32] TIAN C J, KASIBORSKI B, KOUL R, et al. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux [J]. Plant Physiology, 2010, 153(3): 1175−1187. doi: 10.1104/pp.110.156430 [33] HAWKINS H, ANDERS J, ECKHARD G. Uptack and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi [J]. Plant and Soil, 2000, 226: 275−285. doi: 10.1023/A:1026500810385 [34] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754−13759. doi: 10.1073/pnas.1005874107 [35] 徐明岗, 邹长明, 秦道珠, 等. 有机无机肥配合施用下的稻田氮素转化与利用 [J]. 土壤学报, 2002, 39:148−156.XU M G, ZOU C M, QIN D Z, et al. Transformation and utilization on nitrogen in paddy soil under combining application of chemical and organic fertilizers [J]. Acta pedologica singica, 2002, 39: 148−156.(in Chinese [36] 张丽. 稻麦轮作系统中有机无机肥料配施对作物生长及土壤肥力的影响[D]. 南京: 南京农业大学, 2015.ZHANG L. Effect of combined application of organic and inorganic fertilizers on crop growth and soil fertility in a rice-wheat rotation system[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese) [37] 储成, 吴赵越, 黄欠如, 等. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响 [J]. 环境科学, 2020, 41(5):2468−2475.CHU C, WU Z Y, HUANG Q R, et al. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils [J]. Environmental Science, 2020, 41(5): 2468−2475.(in Chinese [38] VERESOGLOU S D, SHAW L J, HOOKER J E, et al. Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the (mycor)rhizosphere of Plantago lanceolata [J]. Soil Biology and Biochemistry, 2012, 53: 78−81. doi: 10.1016/j.soilbio.2012.05.007 [39] CAVAGNARO T R, JACKSON L E, SCOW K M, et al. Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil [J]. Microbial Ecology, 2007, 54(4): 618−626. doi: 10.1007/s00248-007-9212-7 [40] CAMENZIND T, HEMPEL S, HOMEIER J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest [J]. Global Change Biology, 2014, 20(12): 3646−3659. doi: 10.1111/gcb.12618 [41] 田慧, 盖京苹, 李晓林, 等. 农田土著丛枝菌根真菌群落特征和磷吸收作用研究进展 [J]. 土壤通报, 2013, 44(6):1512−1519.TIAN H, GAI J P, LI X L, et al. Community composition and phosphorus uptake by indigenous arbuscular mycorrhizal fungi in agroecosystems [J]. Chinese Journal of Soil Science, 2013, 44(6): 1512−1519.(in Chinese [42] 王晓伟, 左楠楠, 金海如. 不同氮磷浓度对AM真菌生长和养分吸收的影响 [J]. 浙江农业学报, 2013, 25(2):328−332.WANG X W, ZUO N N, JIN H R. Effect of arbuscular mycorrhiza on growth and nutrition absorption of Sorghum under different nitrogen and phosphorus fertilizer levels [J]. Acta Agriculturae Zhejiangensis, 2013, 25(2): 328−332.(in Chinese [43] 徐如玉, 左明雪, 袁银龙, 等. 增施摩西管柄囊霉对甜玉米氮肥增效及土壤丛枝菌根真菌多样性的影响 [J]. 福建农业学报, 2020, 35(4):379−391.XU R Y, ZUO M X, YUAN Y L, et al. Effects of Funneliformis mosseae application on nitrogen utilization by sweet corn and AM fungi diversity in soil [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 379−391.(in Chinese [44] BOLLMANN A, BÄR-GILISSEN M J, LAANBROEK H J. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria [J]. Applied and Environmental Microbiology, 2002, 68(10): 4751−4757. doi: 10.1128/AEM.68.10.4751-4757.2002 [45] 罗蓉. 黄土高原油松人工林参与土壤氮循环功能微生物群落结构研究[D]. 杨凌: 西北农林科技大学, 2018.LUO R. Study on the microbial community structure about soil nitrogen cycling in Pinus tabulaeformis plantation on the loess plateau[D]. Yangling: Northwest A & F University, 2018.(in Chinese)