RNA-Seq Analysis on Liver of Taizhou Geese before and after Egg-laying
-
摘要:
目的 进一步完善泰州鹅基因组结构信息,探索泰州鹅开产前、后肝脏的调控机制。 方法 利用RNA-Seq技术对开产前、后泰州鹅肝脏组织转录组进行分析,利用qRT-PCR对部分RNA-Seq数据进行验证;利用GO富集分析和KEGG通路注释对差异表达基因功能进行解析。 结果 测序获得的初始数据(raw reads)进行系列质控筛选,6个泰州鹅开产前、后肝脏组织获得73 596 894~79 837 756个高质量数据(clean reads),结合FPKM值定量估计所检测的基因表达值,筛选出202个差异基因,其中上调差异表达基因100个,下调差异表达基因102个,经GO功能注释后富集到42个生物功能类别;KEGG分析筛选到63条差异信号通路,其中5条显著富集信号通路为药物代谢-细胞色素P450、氮代谢、戊糖和葡萄糖醛酸相互转化、视黄醇代谢、类固醇激素生物合成通路,这些信号通路功能分析显示与脂质代谢以及生殖过程密切相关。 结论 开产前后泰州鹅肝脏组织RNA-Seq分析表明,泰州鹅开产前后肝脏组织中的差异基因多集中于脂质代谢以及生殖过程,研究结果为进一步研究泰州鹅开产期的肝脏调控机制以及加速泰州鹅地方种群的进一步选育提供了新的数据支撑。 Abstract:Objective Regulating functions of goose liver were studied by genetic analyses before and after the birds started egg-laying. Method RNA-Seq technology was employed to obtain the transcriptome of the liver tissue of Taizhou goose before and after egg-laying. The results were verified using a qRT-PCR method and followed by the Go annotation and KEGG analysis to determine the functions of the differentially expressed genes (DEGs). Result After an initial quality control screening on the raw RNA-Seq data, 73 596 894 to 79 837 756 clean reads were secured from 6 liver specimens. Based on the estimated quantitative FPKM value, 100 upregulated and 102 downregulated genes were identified. By GO annotation, all DEGs were enriched into 42 categories of biological functions. The KEGG analysis found 63 pathways including 5 significant ones that associated with the drug metabolism-cytochrome P450, nitrogen metabolism, pentose and glucuronate interconversions, retinol metabolism, and steroid hormone biosynthesis. These pathways are known to closely relate to lipid metabolism and reproduction regulation. Conclusion The RNA-Seq transcriptomes on the Taizhou goose livers sampled before and after the start of egg-laying indicated that the enriched DEGs mostly involved the lipid metabolism and reproduction process. The information would support further studies on and breeding of Taizhou geese. -
Key words:
- RNA-Seq /
- Taizhou goose /
- liver /
- egg-laying
-
图 1 转录组数据比对基因区域分布统计
注:1~6:样品编号;不同颜色代表所在基因的不同区域(外显子、内含子以及基因间区),区域大小代表具有某一覆盖度范围的转录组数据所占比例。
Figure 1. Transcriptome data vs. regional distribution of genes
Note: 1~6: sample codes; different colors in pie chart represent different locations of genes (exon, intron and intergenic); area size represents transcriptome datum coverage.
图 2 差异表达基因火山图
注:差异表达火山图中的每一个点表示一个基因。蓝色代表下调表达基因,黄色代表上调表达基因,灰色代表无显著性差异表达的基因。
Figure 2. Volcano plot of differentially expressed genes
Note: each dot represents a gene. Blue dot: significantly downregulated genes; yellow dot: significantly upregulated genes; gray dot: genes with no differentiated expression.
图 3 差异表达基因热图聚类分析
注:图中1~6列代表不同的样品,不同行代表不同的基因。颜色代表了基因在样品中的表达量FPKM的对数值,蓝色代表下调表达基因,红色代表上调表达基因。
Figure 3. Heat map of differentially expressed genes
Note: Columns 1–6: individual samples; different rows represent differentially expressed genes. Color scales as log2 (FPKM); blue: significantly downregulated genes; red: significantly upregulated genes.
图 5 差异表达基因GO注释
注:细胞组分:胞外区、细胞、膜、细胞连接处、膜封闭腔、大分子复合物、细胞器、胞外区部分、细胞器部分、病毒离子部分、膜部分、突触部分、细胞部分、突触,胞上、分子复合物;生物过程:免疫系统过程、行为、代谢过程、细胞增殖、细胞过程、生殖过程、生物黏附、信号传导、多细胞组织过程、发育过程、生长、运动、节律过程、刺激反应、定位、多生物过程、生物调节、细胞成分组织或生物发生;分子功能:催化活性、信号转导活性、结构分子活性、转运体活性、结合、翻译调节活性、分子转导活性、分子功能调节、转录、调节活性。
Figure 5. GO annotation on differentially expressed genes
Note:Cellular component: extracellular region, cell, membrane, cell junction, membrane-enclosed lumen, macromolecular complex, organelle, extracellular region part, organelle part, virion part, membrane part, synapse part, cell part, synapse, supramo, lecular complex;Biological process:immune system process, behavior, metabolic process, cell proliferation, cellular process, reproductive process, biological adhesion, signaling, multicellular organismal process, developmental process, growth, locomotion, rhythmic process, response to stimulus, localization, multi-organism process, biological regulation, cellular component organization or biogenesis;Molecular function:catalytic activity, signal transducer activity, structural molecule activity, transporter activity, binding, translation regulator activity, molecular transducer activity, molecular function regulator, transcription, regulator activity.
表 1 qRT-PCR引物序列、退火温度以及目的片段大小
Table 1. Primer sequences, annealing temperature, and predicted length for qRT-PCR
基因
Gene引物序列(5′-3′)
Sequence (5′-3′)退火
温度
Tm/℃产物
大小
Size/bpCHRNA9 F:CAGCCAAAGGGAAATATGCTC 60 180 R:TTTATCCGTGTCTTCCACTGGTC MRAP F:ATTCACTCTTCTCTCAGTTACGTC 58 135 R:AACATGAGGAGTAACTGGTACATG EPSTI1 F:GGAGGAAATGAAGCAAGAACAAC 60 160 R:TCCTCTGTTCATTTTGATGTGCTC TLDC2 F:AGCCCTGGAGCCTGCTGTAC 60 152 R:GCCTCAGTGTCACGGATGAG SLC13A5 F:GTCTTCACCGAATGCACCAG 61 128 R:AGCATGAAGGCAAAGGAAGCAC β-actin F:CAGCCATCTTTCTTGGGTAT 60 164 R:CTGTGATCTCCTTCTGCATCC 表 2 样本数据质量预处理评价分析
Table 2. Quality evaluation and analysis on data preprocessing
样品编号
No.Raw读数
Raw readsRaw基数
Raw bases净读数
Clean reads净读数比例
Clean ratio/%碱基质量
Q30/%1 81 525 658 12 228 848 700 79 443 928 97.45 95.46 2 76 140 902 11 421 135 300 74 434 560 97.76 95.43 3 81 984 186 12 297 627 900 79 837 756 97.38 95.62 4 77 907 180 11 686 077 000 76 091 514 97.67 95.64 5 75 754 528 11 363 179 200 73 596 894 97.15 95.82 6 77 403 998 11 610 599 700 75 702 218 97.80 95.41 注:Raw读数:每个样本的测序raw reads的总数;Raw基数:每个样本测序所获碱基的总数;净读数:过滤后的测序数据;净读数比例:过滤后高质量序列数占原始下机序列数的比例;碱基质量:过滤后,总序列中质量值大于30(错误率小于0.1%)的碱基数的比例。
Note:raw reads: the number of raw reads; raw bases: the number of bases counted on raw reads; clean reads: the number of clean reads after preprocessing; clean ratio: the ratio of bases counted on clean reads; Q30: the ratio of clean bases whose quality threshold over 30.表 3 转录组数据与参考基因组比对结果统计
Table 3. Results of clean reads on sample vs. reference genome
样品编号
No.总读数
Total reads总覆盖数
Total mapped覆盖率
Mapped ratio/%多重覆盖数
MultiMap reads多重覆盖率
MultiMap ratio/%1 79 443 928 70 396 347 88.61 2 257 950 2.84 2 74 434 560 67 324 680 90.45 2 308 666 3.10 3 76 091 514 67 957 322 89.31 1 993 788 2.62 4 73 596 894 66 002 063 89.68 1 916 837 2.60 5 75 702 218 67 433 936 89.08 1 967 303 2.60 6 79 837 756 70 832 388 88.72 2 001 710 2.51 注:总读数:测序序列经过测序数据过滤后的数量(Clean reads);总覆盖数:能定位到基因组上的测序序列的数量;覆盖率:在参考序列上能够比对位置的测序序列的百分比;多重覆盖数:比对到基因组多个位置的序列数;多重覆盖率:比对到基因组多个位置的序列数的百分比。
Note:total reads: the number of clean reads; total mapped: the number of clean reads that align with reference genome; mapped ratio: the percentage of clean reads that align with reference genome; multiMap reads: the number of clean reads that align with reference genome at multiple positions; multiMap ratio: the percentage of clean reads that align with reference genome at multiple positions.表 4 泰州鹅开产前、后肝脏组织上调/下调差异最大的前10位基因
Table 4. Top 10 upregulated and downregulated genes in Taizhou geese before and after start of egg-laying
基因名称
Gene ID开产前表达量
Before laying开产后表达量
Laying group相对表达量
Log2FC上调/下调
Up/Down基因描述
Gene descriptiongene10578 150.00 83.89 −2.52 下调 Down CHRNA9 gene14778 10698.00 6660.66 −2.07 下调 Down SLC13A5 gene20392 1892.67 1136.15 −2.06 下调 Down RGS9BP gene14476 1484.33 893.87 −1.94 下调 Down MRAP gene6885 94.00 509.69 2.51 上调 Up EPSTI1 gene3244 10.33 58.45 2.51 上调 Up MYO18B gene4794 292.00 1268.87 2.37 上调 Up LOC106032697 gene16287 20.67 85.35 2.15 上调 Up TLDC2 gene9668 89.33 397.50 2.09 上调 Up LOC106038139 gene12640 22.67 130.54 1.99 上调 Up TMEM132E 表 5 泰州鹅开产前、后肝脏组织富集显著性最显著的前5条通路
Table 5. Top 5 enriched pathways in liver of Taizhou geese before and after start of egg-laying
通路名称
Pathway name通路编号
Pathway ID富集基因数目
Count校正后P值
P valueDrug metabolism - cytochrome P450
药物代谢-细胞色素P450信号通路map00982 3 0.01 Nitrogen metabolism
氮代谢信号通路map00910 5 0.02 Pentose and glucuronate interconversions
戊糖和葡萄糖醛酸相互转化信号通路map00040 8 0.03 Retinol metabolism
视黄醇代谢信号通路map00830 3 0.01 Steroid hormone biosynthesis
类固醇激素生物合成信号通路map00140 6 0.01 -
[1] OTTINGER M A, BAKST M R. Endocrinology of the avian reproductive system [J]. Journal of Avian Medicine and Surgery, 1995, 9(4): 242−250. [2] WILLIAMS J, HARVEY S. Plasma concentrations of luteinizing hormone growth hormone, oestradiol, testosterone and androstenedione in the domestic hen from 6 weeks of age to sexual maturity [J]. Reproduction Nutrition Development, 1986, 26: 515−522. [3] RANGEL P L, SHARP P J, GUTIERREZ C G. Testosterone antagonist (flutamide) blocks ovulation and preovulatory surges of progesterone, luteinizing hormone and oestradiol in laying hens [J]. Reproduction, 2006, 131(6): 1109−1114. [4] BOURIN M, GAUTRON J, BERGES M, et al. Transcriptomic profiling of proteases and antiproteases in the liver of sexually mature hens in relation to vitellogenesis [J]. BMC Genomics, 2012, 13(1): 1−14. [5] 徐春林. 鸡肝脏脂质转运关键基因的鉴定及表达调控研究[D]. 郑州: 河南农业大学, 2016.XU C L. Identification, expression and regulation of key genes for liver lipoprotein transport in chicken[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese). [6] 李艳敏, 李翠翠, 郑航, 等. 雌激素通过ER-α调控CYP2C8在鸡肝中的表达 [J]. 畜牧兽医学报, 2016, 47(12):2362−2369. doi: 10.11843/j.issn.0366-6964.2016.12.005LI Y M, LI C C, ZHENG H, et al. Expression of CYP2C8 is regulated by estrogen through ER-α in liver of chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2362−2369.(in Chinese doi: 10.11843/j.issn.0366-6964.2016.12.005 [7] 顾真真, 李红, 刘乙, 等. lncLER在卢氏绿壳蛋鸡肝脏中表达调控的研究 [J]. 中国畜牧兽医, 2017, 44(4):973−979.GU Z Z, LI H, LIU Y, et al. The expression and regulation of lncLER in liver of Lushi Green-shelled-egg chicken [J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(4): 973−979.(in Chinese [8] 杨丽玉, 李艳敏, 郑航, 等. 鸡肝脏中PNPLA3基因表达及调控研究 [J]. 农业生物技术学报, 2018, 26(8):1361−1370.YANG L Y, LI Y M, ZHENG H, et al. Characteristics of expression and regulation of PNPLA3 in the liver of chicken (Gallus gallus) [J]. Journal of Agricultural Biotechnology, 2018, 26(8): 1361−1370.(in Chinese [9] GRIFFIN H D. Manipulation of egg yolk cholesterol: A physiologist's view [J]. Worlds Poultry Science Journal, 1992, 48(2): 101−112. [10] LIU Y L, WAN D, ZHOU X H, et al. Effects of dynamic feeding low- and high-methionine diets on the variation of glucose and lipid metabolism-related genes in the liver of laying hens [J]. Poultry Science, 2019, 98(5): 2231−2240. [11] SCHNEIDER W J. Lipid transport to avian oocytes and to the developing embryo [J]. Journal of Biomedical Research, 2016, 30(3): 174−180. [12] 陈伟, 林映才, 张罕星, 等. 家禽脂肪酸代谢及其在禽蛋中的沉积和营养调控 [J]. 动物营养学报, 2012, 24(2):204−211. doi: 10.3969/j.issn.1006-267x.2012.02.003CHEN W, LIN Y C, ZHANG H X, et al. Fatty acids: Metabolism in poultry and deposition and nutritional regulation in eggs [J]. Acta Zoonutrimenta Sinica, 2012, 24(2): 204−211.(in Chinese doi: 10.3969/j.issn.1006-267x.2012.02.003 [13] LI H, WANG T A, XU C L, et al. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens [J]. BMC Genomics, 2015, 16(1): 1−13. [14] 张臻. 白来航蛋鸡首次产蛋前后肠道与肝脏转录组的研究[D]. 晋中: 山西农业大学, 2017.ZHANG Z. Study on the intestinal and liver transcriptome of the white leghorn layer before and after first egg laying[D]. Jinzhong: Shanxi Agricultural University, 2017. (in Chinese). [15] 杜文兴. 中国地方鹅种遗传资源多样性与分类地位的研究[D]. 南京: 南京农业大学, 2011.DU W X. The research on genetic resources diversity and taxonomic status of Chinese local goose breeds[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese). [16] 吴敏. 不同养鹅模式成本收益分析[D]. 南京: 南京农业大学, 2017.WU M. Cost-benefit analysis of different goose-raising patterns[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese). [17] 张蕾, 张海波, 章敬旗, 等. 基于RNA-Seq测序的高、低产双黄蛋高邮鸭卵巢组织SNP筛选分析 [J]. 中国畜牧兽医, 2019, 46(12):3495−3503.ZHANG L, ZHANG H B, ZHANG J Q, et al. SNP screening and analysis of ovaries between Gaoyou ducks with high and low yield double-yolk egg based on RNA-seq [J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(12): 3495−3503.(in Chinese [18] 王旭平, 杨胜林, 陆曼, 等. 番鸭攻击行为的转录组学研究 [J]. 农业生物技术学报, 2018, 26(4):687−697.WANG X P, YANG S L, LU M, et al. Transcriptomics analysis of the aggressive behavior of Muscovy duck (Cairna moschata) [J]. Journal of Agricultural Biotechnology, 2018, 26(4): 687−697.(in Chinese [19] BUYSE J, DECUYPERE E. Adipose Tissue and Lipid Metabolism[M]. Sturkie’s Avian Physiology: 6 edition. 2015: 443–453. [20] REINKE H, ASHER G. Circadian clock control of liver metabolic functions [J]. Gastroenterology, 2016, 150(3): 574−580. [21] 李云雷, 孙研研, 陈继兰. 脂肪沉积对家禽繁殖性状影响的研究进展 [J]. 中国家禽, 2016, 38(13):36−41.LI Y L, SUN Y Y, CHEN J L. Research progresses on effects of fat deposition on reproduction performance of poultry [J]. China Poultry, 2016, 38(13): 36−41.(in Chinese [22] 尹靖东, 齐广海, 霍启光. 家禽脂类代谢调控机理的研究进展 [J]. 动物营养学报, 2000, 12(2):1−7.YIN J D, QI G H, HUO Q G. Advances in modulation of lipid metabolism in poultry [J]. Chinese Journal of Animal Nutrition,, 2000, 12(2): 1−7.(in Chinese [23] 宋稀稀. 鸡Ghrelin分泌影响因素和调控脂肪代谢作用的机制[D]. 泰安: 山东农业大学, 2018.SONG X X. Regulating factors for ghrelin secretion and ghrelin's effect on lipid metabolism in chickens[D]. Taian: Shandong Agricultural University, 2018. (in Chinese). [24] SHAO F, WANG X, YU J, et al. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver [J]. British Poultry Science, 2019, 60(2): 115−124. [25] NOVOSELOVA T V, JACKSON D, CAMPBELL D C, et al. Melanocortin receptor accessory proteins in adrenal gland physiology and beyond [J]. The Journal of Endocrinology, 2013, 217(1): R1−R11. [26] 任俊晓. 雌激素处理鸡肝脏转录组分析及候选基因受雌激素调控的分子机制研究[D]. 郑州: 河南农业大学, 2017.REN J X. Study on estrogen treated chicken liver transcriptome and estrogen regulation molecular mechanism on the candidate genes[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese). [27] LI L H, LI H S, GARZEL B, et al. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver [J]. Molecular Pharmacology, 2015, 87(4): 674− 682. [28] SHULMAN G I, HELFAND S L. Indy knockdown in mice mimics elements of dietary restriction [J]. Aging, 2011, 3(8): 701. [29] 林道保. 维生素A在畜禽上的免疫学研究进展 [J]. 养禽与禽病防治, 2015(2):2−4.LIN D B. Immunology research progress of Vitamin A in livestock and poultry [J]. Poultry Husbandry and Disease Control, 2015(2): 2−4.(in Chinese [30] DONG X F, ZHAI Q H, TONG J M. Dietary choline supplementation regulated lipid profiles of egg yolk, blood, and liver and improved hepatic redox status in laying hens [J]. Poultry Science, 2019, 98(8): 3304−3312. [31] 赵瑜. 视黄酸在维持小鼠原始卵泡库稳定中的作用及机制研究[D]. 北京: 中国农业大学, 2019.ZHAO Y. The role and mechanism of retinoid acid maintaining the stability of primordial follicle pool in mice[D]. Beijing: China Agricultural University, 2019. (in Chinese). [32] 张经伟, 张正红, 王正朝. 黄体类固醇激素受体的结构功能及其生理调节 [J]. 中国细胞生物学学报, 2019, 41(8):1628−1632.ZHANG J W, ZHANG Z H, WANG Z C. The structure, functions and physiological regulation of steroid hormone receptors in the corpus luteum [J]. Chinese Journal of Cell Biology, 2019, 41(8): 1628−1632.(in Chinese