Effect of Endogenous Hormones and Expressions of Relevant Genes on Tuber Growth of Bikeqi Yam
-
摘要:
目的 分析毕克齐山药中内源激素含量与淀粉含量、可溶性总糖含量和还原糖含量的关系,以及与其相关合成基因表达量的相关性,探究毕克齐山药块茎膨大的机理。 方法 以毕克齐山药5个不同生长期块茎为材料,采用酶联免疫吸附法分别测定脱落酸(ABA)、赤霉素(GA3)、生长素(IAA)、茉莉酸(JA)、玉米素(ZR)、异戊烯基腺苷(IPA)等6种内源激素含量,采用高效液相色谱仪测定方法测定水杨酸(SA)含量。 结果 IAA、ZR、ABA、JA和SA含量与山药块茎形态指标正相关;GA3、IPA含量与形态指标负相关;IAA含量与山药块茎周长和块茎直径显著正相关;GA3含量与块茎长度显著负相关;与IAA相关的基因与内源激素IAA含量显著负相关。 结论 内源激素IAA、ZR、ABA、JA和SA促进山药块茎膨大;GA3、IPA抑制山药块茎生长;IAA促进山药增粗;GA3抑制其伸长生长;与IAA相关的基因的下调表达对IAA的合成有促进作用,即正调控IAA含量。 Abstract:Objective Effects of endogenous hormones and expressions of genes related to the hormone syntheses on the morphology and physiology of bikequ yam (Dioscorea Opposita) tubers during expanding stage were investigated. Correlation between the indicators was established to provide guidelines for upgrading the yield and quality of the yam farming. Method During expansion stage of the tubers, contents of starch, reducing sugar, and soluble total sugar were determined by chemical analysis, those of endogenous ABA, GA3, IAA, JA, ZR, and IPA by enzyme-linked immunosorbent assay, and that of salicylic acid (SA) by HPLC. Correlations between these indicators were tested by regression analysis. The gene expression levels of endogenous hormone related genes were obtained by transcriptome sequencing. Result The contents of IAA, ZR, ABA, JA, and SA correlated positively with the morphological indices on the tuber, while those of GA3 and IPA correlated negatively. IAA correlated with the tuber perimeter and diameter. GA3 correlated inversely with the length of tuber. The IAA-related gene was found to negatively correlate with IAA in the tubers. Conclusion Among the endogenous hormones, IAA, ZR, ABA, JA, and SA promoted the tuber enlargement; GA3 and IPA inhibited the growth; IAA enhanced the girth increase; and, GA3 retarded the elongation. The downregulation of IAA-related gene increased the hormone synthesis. In other words, the gene could regulate the IAA production in the yams, and in turn, affected the tuber growth. -
表 1 毕克齐山药在块茎膨大过程内源激素含量变化
Table 1. Changes on endogenous hormones during tuber enlargement of Bikeqi yam
[单位: ng·g−1(FW)] 项目 Item 105 d 120 d 135 d 150 d 165 d 生长素 IAA 24.697±1.82 b 38.542±1.76 b 46.454±3.46 a 37.793±2.41 b 48.012±2.68 a 玉米素 ZR 5.295±0.23 b 6.97±0.39b 8.129±0.45 ab 9.39±0.72 a 6.751±0.36 b 脱落酸 ABA 33.274±1.93 bc 33.564±0.03 bc 28.402±1.70 c 40.707±2.11 b 81.939±1.88 a 茉莉酸 JA 11.976±0.43 b 12.678±0.39 b 15.806±1.02 ab 13.541±0.92 b 21.276±1.46 a 赤霉素 GA3 5.484±0.44 a 2.538±0.09 c 4.072±0.36 bc 3.209±0.20 bc 3.69±0.26 bc 异戊烯基腺苷 IPA 4.103±0.20 b 8.005±0.30 a 5.943±0.37 ab 4.202±0.21 b 4.419±0.27 b 水杨酸 SA 52.308±30.38 b 88.763±63.26 ab 19.226±10.83 b 81±37.48 ab 234.867±111.44 a 注:同行不同小写字母表示在0.05水平上差异显著。
Note: Data with different lowercase letters indicate significant differences at 0.05 level.表 2 毕克齐山药内源激素与形态、生理指标相关性
Table 2. Correlation between endogenous hormones and morphology and physiology of Bikeqi yam tubers
项目
Item块茎长度
Length块茎周长
Circumference块茎直径
Diameter块茎鲜重
Fresh
weight块茎干重
Dry
weight淀粉含量
Starch
content还原糖含量
Reducing sugar
content可溶性总糖含量
Total soluble
sugar contentIAA ZR ABA JA GA3 IPA SA 块茎长度
Length0.756 0.757 0.674 0.679 0.375 −0.78 −0.940* 0.841 0.562 0.431 0.531 −0.892* 0.435 0.494 块茎周长
Circumference1.000** 0.922* 0.981** 0.719 −0.823 −0.839 0.906* 0.589 0.64 0.833 −0.425 −0.161 0.553 块茎直径
Diameter0.924* 0.982** 0.715 −0.822 −0.838 0.904* 0.588 0.643 0.833 −0.425 −0.162 0.557 块茎鲜重
Fresh weight0.972** 0.489 −0.84 −0.75 0.692 0.657 0.665 0.694 −0.43 −0.362 0.591 块茎干重
Dry weight0.646 −0.817 −0.771 0.807 0.602 0.677 0.804 −0.36 −0.321 0.579 淀粉含量
Starch content−0.617 −0.611 0.767 0.542 0.072 0.524 −0.061 −0.04 −0.082 还原糖含量
Reducing sugar content0.927* −0.732 −0.932* −0.21 −0.375 0.673 −0.034 −0.170 可溶性总糖含量
Total soluble sugar content−0.883* −0.773 −0.289 −0.494 0.805 −0.315 −0.293 IAA 0.483 0.479 0.779 −0.533 0.227 0.433 ZR −0.116 0.043 −0.575 0.022 −0.159 ABA 0.871 −0.118 −0.378 0.975** JA −0.107 −0.242 0.787 GA3 −0.612 −0.252 IPA −0.222 注:*在0.05水平,相关性显著。**在0.01水平,相关性极显著。表5、6同。
Note:*Significant correlation (P<0.05); **Extremely significant correlation (P<0.01). Same for Tables 5 and 6.表 3 与内源激素合成相关基因的基因编号、基因代号和基因注释信息
Table 3. Number, code, and information on genes associated with endogenous hormone synthesis in Bikeqi yam tubers
项目
Item基因
ID Gene ID基因代号
Gene code基因注释信息
Gene annotation information与IAA合成相关基因 Genes related to IAA synthesis Unigene0016848 IAA 1 生长素响应蛋白基因 Auxin response protein gene Unigene0021936 IAA 2 生长素响应蛋白基因 Auxin response protein gene Unigene0023040 IAA 3 生长素响应蛋白基因 Auxin response protein gene Unigene0025388 IAA 4 IAA-氨基酸水解酶 ILR1基因 IAA-amino acid hydrolase ILR1 gene Unigene0027417 IAA 5 IAA-氨基酸水解酶 ILR1基因 IAA-amino acid hydrolase ILR1 gene Unigene0027794 IAA 6 生长素响应蛋白基因 Auxin response protein gene Unigene0028701 IAA 7 生长素响应蛋白基因 Auxin response protein gene Unigene0028916 IAA 8 生长素响应蛋白基因 Auxin response protein gene Unigene0030426 IAA 9 生长素响应蛋白基因 Auxin response protein gene 与 GA3合成相关基因 Genes related to GA3 synthesis Unigene0002430 GA3 1 赤霉素2-β-双加氧酶 Gibberellin 2-β-dioxygenase Unigene0019924 GA3 2 赤霉素2-β-双加氧酶 Gibberellin 2-β-dioxygenase Unigene0021502 GA3 3 赤霉素2-β-双加氧酶 Gibberellin 2-β-dioxygenase Unigene0021503 GA3 4 赤霉素2-β-双加氧酶 Gibberellin 2-β-dioxygenase Unigene0027812 GA3 5 赤霉素20氧化酶 Gibberellin 2-β-dioxygenase Unigene0023907 GA3 6 赤霉素调节蛋白基因 Gibberellin regulatory protein gene Unigene0024440 GA3 7 赤霉素调节蛋白基因 Gibberellin regulatory protein gene Unigene0026445 GA3 8 赤霉素调节蛋白基因 Gibberellin regulatory protein gene Unigene0020765 GA3 9 赤霉素调节蛋白基因 Gibberellin regulatory protein gene 表 4 与内源激素合成相关基因的rpkm平均值
Table 4. Average rpkm of genes associated with endogenous hormone synthesis
项目
Item基因ID
Gene ID基因代号
Gene code105 d 120 d 135 d 150 d 165 d 与IAA合成相关基因
Genes related to IAA synthesisUnigene0016848 IAA 1 95.82±30.63 65.29±44.90 64.25±22.21 26.73±12.83 26.68±10.96 Unigene0021936 IAA 2 14.49±2.45 8.08±6.19 3.64±2.22 2.95±3.33 3.57±0.87 Unigene0023040 IAA 3 213.97±40.34 119.15±61.21 132.16±54.901 48.88±36.07 39.56±9.26 Unigene0025388 IAA 4 4.61±3.19 5.45±0.97 8.84±2.12 1.18±0.84 0.00 Unigene0027417 IAA 5 11.82±1.17 7.21±3.44 5.10±1.42 1.48±1.15 3.18±0.68 Unigene0027794 IAA 6 2.28±0.33 0.82±0.67 0.53±0.42 0.28±0.39 0.00 Unigene0028701 IAA 7 60.78±12.10 30.43±21.84 77.84±20.86 50.67±17.82 21.64±5.46 Unigene0028916 IAA 8 127.67±26.48 40.53±21.48 66.59±24.93 35.91±11.76 14.06±1.25 Unigene0030426 IAA 9 7.79±1.10 2.82±3.12 3.91±1.72 0.36±0.51 2.20±0.80 与GA3合成相关基因
Genes related to GA3 synthesisUnigene0002430 GA3 1 24.60±5.23 24.72±10.21 18.71±6.22 5.74±6.31 2.92±0.83 Unigene0019924 GA3 2 4.80±1.80 0.62±0.60 1.20±1.54 0.00 0.00 Unigene0021502 GA3 3 4.02±1.56 1.21±1.06 3.05±2.99 2.34±1.78 0.00 Unigene0021503 GA3 4 5.82±3.34 5.51±2.87 5.20±2.06 6.88±7.74 0.00 Unigene0027812 GA3 5 13.12±2.80 1.38±1.23 2.59±0.96 1.91±0.92 5.69±1.14 Unigene0023907 GA3 6 16.76±10.56 4.20±5.94 0.67±0.60 0.08±0.12 0.42±0.60 Unigene0024440 GA3 7 176.89±19.66 189.53±72.98 110.84±19.67 80.80±39.49 423.10±68.62 Unigene0026445 GA3 8 47.20±12.01 32.18±34.09 51.94±10.28 74.13±97.99 203.55±60.52 Unigene0020765 GA3 9 11.95±2.51 1.74±1.95 4.61±2.35 0.55±0.78 0.00 表 5 内源激素IAA含量与其合成相关基因表达量的相关性分析
Table 5. Correlation between IAA and expression of IAA synthesis-related gene
项目
ItemIAA含量
IAA contentIAA 1 IAA 2 IAA 3 IAA 4 IAA 5 IAA 6 IAA 7 IAA 8 IAA 9 IAA含量 IAA content −0.681 −0.875 −0.719 −0.046 −0.744 −0.902* −0.230 −0.799 −0.644 IAA 1 0.868 0.992** 0.669 0.956* 0.912* 0.482 0.898* 0.916* IAA 2 0.869 0.218 0.961** 0.966** 0.128 0.833 0.869 IAA 3 0.638 0.944* 0.936* 0.547 0.946* 0.936* IAA 4 0.442 0.340 0.700 0.481 0.453 IAA 5 0.944* 0.245 0.855 0.937* IAA 6 0.373 0.944* 0.904* IAA 7 0.643 0.418 IAA 8 0.911* IAA 9 表 6 内源激素GA3含量与其合成相关基因表达量的相关性分析
Table 6. Correlation between GA3 and expression of GA3 synthesis-related gene
项目
ItemGA3含量
GA3 contentGA3 1 GA3 2 GA3 3 GA3 4 GA3 5 GA3 6 GA3 7 GA3 8 GA3 9 GA3含量 GA3 content 0.256 0.863 0.680 0.020 0.900* 0.737 −0.007 −0.041 0.872 GA3 1 0.652 0.557 0.511 0.267 0.648 −0.400 −0.803 0.673 GA3 2 0.765 0.306 0.876 0.958* −0.185 −0.416 0.991** GA3 3 0.728 0.468 0.620 −0.730 −0.704 0.826 GA3 4 −0.096 0.277 −0.957* −0.910* 0.354 GA3 5 0.873 0.224 0.058 0.827 GA3 6 −0.085 −0.383 0.914* GA3 7 0.854 −0.265 GA3 8 −0.469 GA3 9 -
[1] 李艳英, 甘秀芹, 韦本辉, 等. 64份淮山种质资源品质性状分析 [J]. 植物遗传资源学报, 2016, 17(2):246−251.LI Y Y, GAN X Q, WEI B H, et al. Analysis on quality characters of 64 yam(Dioscorea L.) germplasm resources [J]. Journal of Plant Genetic Resources, 2016, 17(2): 246−251.(in Chinese [2] SANTNER A, CALDERON-VILLALOBOS L I A, ESTELLE M. Plant hormones are versatile chemical regulators of plant growth [J]. Nature Chemical Biology, 2009, 5(5): 301−307. doi: 10.1038/nchembio.165 [3] 李玲玲. 菊芋块茎形成及其与内源激素的关系初步研究[D]. 南京: 南京农业大学, 2015.LI L L. Preliminary researches on Tuber formation of Helianthus tubersosus land the relation with endogenous phytohormones[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese). [4] 王志敏, 霍秀文, 张艳芳, 等. 山药(Dioscorea opposita)块茎不同发育时期相关差异基因的cDNA-AFLP分析 [J]. 分子植物育种, 2019, 17(11):3650−3659.WANG Z M, HUO X W, ZHANG Y F, et al. cDNA-AFLP analysis of differential genes related to different development stages of Dioscorea opposita tubers [J]. Molecular Plant Breeding, 2019, 17(11): 3650−3659.(in Chinese [5] 梁任繁, 李创珍, 张娟, 等. 山药块茎发育中物质积累及相关代谢酶变化 [J]. 作物学报, 2011, 37(5):903−910. doi: 10.3724/SP.J.1006.2011.00903LIANG R F, LI C Z, ZHANG J, et al. Changes of matter accumulation and relative enzymatic activity during yam Tuber development [J]. Acta Agronomica Sinica, 2011, 37(5): 903−910.(in Chinese doi: 10.3724/SP.J.1006.2011.00903 [6] 周芸伊. 山药DELLA蛋白参与赤霉素调控块茎生长膨大的分子机制[C]//2017年中国作物学会学术年会论文摘要集, 2017, 130-131. [7] 周芸伊, 张静, 王亚伦, 等. 赤霉素调控植物块茎形态建成的研究进展 [J]. 作物杂志, 2016(4):20−25.ZHOU Y Y, ZHANG J, WANG Y L, et al. Progress of gibberellin regulation on Tuber morphogenesis in higher plant [J]. Crops, 2016(4): 20−25.(in Chinese [8] 甘立军, 曾晓春, 周燮. 茉莉酸类与植物地下贮藏器官的形成 [J]. 植物学通报, 2001, 18(5):546−553.GAN L J, ZENG X C, ZHOU X. Possible involvement of jasmonates in the morphogenesis of underground storage organs in plants [J]. Chinese Bulletin of Botany, 2001, 18(5): 546−553.(in Chinese [9] 汪雷, 马琛, 高海立, 等. 钙对半夏生理特性及光合生理的影响 [J]. 浙江理工大学学报(自然科学版), 2018, 39(4):461−467.WANG L, MA C, GAO H L, et al. Effects of calcium on physiological characteristics and photosynthetic physiology of Pinellia ternata [J]. Journal of Zhejiang Institute of Science and Technology, 2018, 39(4): 461−467.(in Chinese [10] ROUMELIOTIS E, KLOOSTERMAN B, OORTWIJN M, et al. The effects of auxin and strigolactones on Tuber initiation and stolon architecture in potato [J]. Journal of Experimental Botany, 2012, 63(12): 4539−4547. doi: 10.1093/jxb/ers132 [11] ZHANG Z J, ZHOU W J, LI H Z. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato [J]. Acta Physiologiae Plantarum, 2005, 27(3): 363−369. doi: 10.1007/s11738-005-0013-7 [12] 敖兰吉亚, 季祥, 邵盈, 等. 山药块茎生长期5种内源激素含量变化对块茎膨大的影响 [J]. 福建农业学报, 2019, 34(3):284−292.AOLAN J Y, JI X, SHAO Y, et al. Correlation between endogenous hormones and Tuber growth of Dioscorea opposite thunb [J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 284−292.(in Chinese [13] PAN X Q, WELTI R, WANG X M. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry [J]. Phytochemistry, 2008, 69(8): 1773−1781. doi: 10.1016/j.phytochem.2008.02.008 [14] 孙霞. 毕克齐长山药生育和贮藏期间营养成分及相关酶活性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.SUN X. Study on the Tuber nutrition content and pertinent enzyme activity of bikeqi yam during growth development and storage period[D]. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese). [15] 李明军, 刘世宇, 刘雯, 等. 怀山药微型块茎形成过程中的生理生化变化 [J]. 植物生理学报, 2017, 53(5):807−814.LI M J, LIU S Y, LIU W, et al. Physiological and biochemical changes in Dioscorea opposita during the process of microtuber formation [J]. Plant Physiology Communications, 2017, 53(5): 807−814.(in Chinese [16] 陈小琴. 人参榕块根膨大机理及其调控技术研究[D]. 福州: 福建农林大学, 2009.CHEN X Q. Study on the enlargement mechanism and regulation technology of tuberous root of Ficus microcarpa l. f.[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese). [17] 李良俊, 潘恩超, 许超, 等. 莲藕膨大过程中内源激素、水杨酸和多胺含量的变化 [J]. 园艺学报, 2006, 33(5):1106−1108.LI L J, PAN E C, XU C, et al. Changes of endogenous hormones, polyamines and salicylic acid content during rhizome development of Nelumbo nucifera gaertn [J]. Acta Horticulturae Sinica, 2006, 33(5): 1106−1108.(in Chinese [18] 孙鹏. 植物激素对甜菜块根增长和糖分积累的调控作用[D]. 呼和浩特: 内蒙古农业大学, 2014.SUN P. The regulation of plant hormone on the increase of Tuber weight and sugar accumulation of sugar beet[D]. Hohhot: Inner Mongolia Agricultural University, 2014. (in Chinese). [19] 龙雯虹, 郭华春, 肖关丽, 等. 山药珠芽生长过程中激素和糖类物质含量的变化 [J]. 园艺学报, 2011, 38(4):753−760.LONG W H, GUO H C, XIAO G L, et al. Variation of endogenous hormone and carbohydrate contents in growing yam bulbils [J]. Acta Horticulturae Sinica, 2011, 38(4): 753−760.(in Chinese [20] 张培安, 左倩倩, 董天宇, 等. 茉莉酸甲酯对葡萄植株不定根发育的影响 [J]. 园艺学报, 2018, 45(12):2331−2346.ZHANG P A, ZUO Q Q, DONG T Y, et al. Effects of MeJA on adventitious root development of grape plants [J]. Acta Horticulturae Sinica, 2018, 45(12): 2331−2346.(in Chinese [21] 王润润. 马铃薯块茎离体发育过程茉莉酸调控的差异蛋白质组分析[D]. 兰州: 甘肃农业大学, 2017.WANG R R. Comparative proteomic analysis of potato Tuber development in vitro regulated by jasmonate acid[D]. Lanzhou: Gansu Agricultural University, 2017. (in Chinese). [22] 何依雪, 刘文, 沈祥陵. 蔗糖, GA与液体培养基对马铃薯块茎形成的影响 [J]. 生物技术通报, 2018, 34(7):74−80.HE Y X, LIU W, SHEN X L. Effect of sucrose, GA and liquid medium on the Tuber formation of potato [J]. Biotechnology Bulletin, 2018, 34(7): 74−80.(in Chinese [23] 龚明霞, 罗海玲, 袁红娟, 等. 外源赤霉素和多效唑对山药块茎膨大和零余子形成的影响 [J]. 园艺学报, 2015, 42(6):1175−1184.GONG M X, LUO H L, YUAN H J, et al. Effects of exogenous gibberellin and paclobutrazol on Tuber expansion and bulbil formation of Chinese yam [J]. Acta Horticulturae Sinica, 2015, 42(6): 1175−1184.(in Chinese [24] 李亮. 水杨酸在黄瓜(Cucumis sativus L.)幼苗应答低温胁迫中的作用机制[D]. 北京: 中国农业科学院, 2013.LI L. Roles of salicylic acid in response to low temperature stress in cucumber (Cucumis sativus L.) seedlings[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese). [25] 杨鑫, 罗兴录, 覃宏宇, 等. 木薯内源激素含量与块根淀粉积累关系研究 [J]. 中国农学通报, 2013, 29(33):158−164.YANG X, LUO X L, QIN H Y, et al. Study on endogenous hormones content and its relations to tuberous root starch accumulation in cassava [J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 158−164.(in Chinese [26] 肖年湘, 郁松林, 王春飞. 6-BA、玉米素对全球红葡萄果实发育过程中糖分含量和转化酶活性的影响 [J]. 西北农业学报, 2008, 17(3):227−231.XIAO N X, YU S L, WANG C F. Effects of 6-BA and Zeatin on the fruit sugar contents and invertase activities in red globe grape during fruit development [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(3): 227−231.(in Chinese [27] 苏艳. 草莓果实糖代谢规律及其对生长素信号的响应[D]. 北京: 北京林业大学, 2009.SU Y. Study on the regulation of sugar metabolism and sugar metabolism respond to auxin signaling in developing fruits of strawberry[D]. Beijing: Beijing Forestry University, 2009. (in Chinese). [28] 张丽丽. 三个棉花生长素信号转导途径相关基因的克隆与鉴定[D]. 南京: 南京农业大学, 2010.ZHANG L L. Cloning and characterization of three genes related with auxin signal transduction in Gossypium hirsutum l.[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese). [29] 罗莎. Aux/IAA家族转录因子OsIAA9对拟南芥生长素信号转导及根部生长发育的调控[D]. 长春: 东北师范大学, 2015.LUO S. Regulation of auxin signaling and root growth by Aux/IAA transcription factor OsIAA9 in Arabidopsis[D]. Changchun: Northeast Normal University, 2015. (in Chinese). [30] 王益军, 吕燕萍, 谢秦, 等. 高粱全基因组生长素原初响应基因Aux/IAA的序列特征分析 [J]. 作物学报, 2010, 36(4):688−694. doi: 10.3724/SP.J.1006.2010.00688WANG Y J, LV Y P, XIE Q, et al. Whole-genome sequence characterization of primary auxin-responsive Aux/IAA gene family in Sorghum (Sorghum bicolor L.) [J]. Acta Agronomica Sinica, 2010, 36(4): 688−694.(in Chinese doi: 10.3724/SP.J.1006.2010.00688 [31] 林伟强. 拟南芥Aux/IAA家族基因IAA2的反向遗传学功能研究[D]. 杭州: 浙江大学, 2007.LIN W Q. Functional analyses of Aux/IAA family member IAA2 by reverse genetic approaches in Arabidopsis thaliana[D]. Hangzhou: Zhejiang University, 2007. (in Chinese). [32] DU H Q, SHI Y H, LI D F, et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves [J]. US National Library of Medicine National Institutes of Health, 2017, 12(2): 1−25. [33] 程红亮, 陈甲法, 丁俊强, 等. 一个玉米叶色突变体的遗传分析与基因定位 [J]. 华北农学报, 2011, 26(3):7−10.CHENG H L, CHEN J F, DING J Q, et al. Genetic analysis and gene mapping of a leaf mutant in maize [J]. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 7−10.(in Chinese [34] 吴建明, 陈荣发, 黄杏, 等. 高等植物赤霉素生物合成关键组分 GA20-oxidase 氧化酶基因的研究进展 [J]. 生物技术通报, 2016, 32(7):1−12.WU J M, CHEN R F, HUANG X, et al. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant [J]. Biotechnology Bulletin, 2016, 32(7): 1−12.(in Chinese [35] SUN L M, AI X Y, LI W Y, et al. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing [J]. PLoS One, 2012, 7(8): e43760. doi: 10.1371/journal.pone.0043760