Floral Organogenesis of Red Pitaya (Hylocereus monacanthus)
-
摘要:
目的 通过研究红肉火龙果花器官发生次序、解剖结构和形态特征,为火龙果花芽分化期划分和花期调控等研究提供参考。 方法 以红肉火龙果不同发育时期的花芽为材料,使用基恩士VHX-5000数码显微镜对花器官发生和发育过程进行观察。 结果 红肉火龙果花芽从枝条上的刺座下方发生;萼片原基、花瓣原基呈螺旋状发生。雄蕊原基多轮着生于花被片基部,近轴端雄蕊原基发育早于远轴端。花药着生方式为基着药,具4个花粉囊,对称排列,纵裂。心皮原基多达30个且同时发生,多个心皮原基底部愈合形成侧膜胎座和下位子房,子房1室。2行胚珠着生于腹缝线上,拳卷胚珠。心皮原基顶部收拢且向上分化出花柱和柱头。成熟的柱头浅裂24~30裂,柱头表面密布乳突细胞;花柱中空,花柱道密布乳突状细胞。 结论 红肉火龙果花器官发生次序为萼片原基–花瓣原基–雄蕊原基–雌蕊原基,部分花器官发生和发育在时间上存在重叠性。 Abstract:Objective Occurrence, distribution, anatomical structure, and morphological characteristics of floral organs of red pitaya (Hylocereus monacanthus) were microscopically observed to study the differentiation and regulation of the organogenesis. Method Flower buds on red pitaya plants at different developmental stages were examined under a VHX-5000 digital microscope. Result The flower buds were formed mainly below the spines on the branches. The sepal and petal primordia were initiated spirally. The multi-round stamen primordia originated at the base of perianth on proximal before distal axis. Anthers, including 4 pollen sacs lined symmetrically and split longitudinally, grew at the bottom. There were as many as 30 carpels primordia appeared simultaneously. Multiple carpel primordia might form ovaries that contained a single locule. Two rows of circinotropous ovules were inserted on the abdominal suture. The mature stigma showed 24-30 shallow clefts with numerous papilla cells on the surface. The style had a hollow canal with an inner surface densely covered with passage cells. Conclusion The sequence of the floral organogenesis of red pitaya started from sepal primordia, developed into petal primordia, then stamen primordia, and finally, carpel primordia. However, there were overlaps in time of appearance on some of the organs. -
图 1 花被片和心皮原基的发生发育过程
注:A:刺座及刺座上的短刺;B:刺座下的初始萼片原基;C:花原基从刺座下发生;D~E:花被片分化和发育;F~G:雄蕊原基分化和发育;H~I:生长点向中部抬升形成凸起;J:生长中心凹陷,心皮原基分化;K:心皮原基进一步分化和发育;L:覆瓦状排列的花被片.图内标记如下:C:心皮原基;F:花芽顶部;Se:萼片原基;St:雄蕊原基;Te:花被片;Sb:刺座;Sp:短刺.
Figure 1. Initiation and developmental process of tepals and carpellary primordia
Note: A: Spine and its short puncture; B: Initial sepal primordia located below the spine; C: Flower primordia occurred from the spine; D-E: Initiation and development of tepals; F-G: Initiation and development of stamen primordia; H-I: Bluge was formed through growth point central elevation; J: Depression in the growth center and initiation in carpellary primordia; K: Initiation and development of carpellary primordia; L: Overlapping sepals. The marks in the picture are as follows: C: carpellary primordia; F: floral apex; Se: sepal primordia; St: stamen primordia; Te: tepal; Sb: spine bud; Sp: short puncture.
图 2 雄蕊原基和胚珠原基的发生发育过程
注:A~C:雄蕊原基进一步发育,心皮原基逐步向中间围拢;D:胚珠原基分化;E~F:胚珠原基进一步发育,心皮原基纵向分化形成花柱和柱头;G:胚珠原基柱头和花柱进一步发育;H~I:进一步发育的胚珠原基;J:雄蕊上部分化成花药,下部分化为花丝;K~L:胚珠原基进一步发育。图片内标记如下:C:心皮原基;Fi:花丝;Oa:子房壁;Ov:胚珠原基;Pe:花瓣原基;St:雄蕊原基;Sti:柱头;V:腹缝线。
Figure 2. Initiation and development of stamen and ovule primordia
Note: A-C: Carpel gradually closes up, ovary forms, and stamen primordia develops; D: Initiation of ovule primordia; E-F: Initiation of stigma and style, and development of carpellary primordia; G: Development of ovule primordia and style; H-I: Development of ovule primordia; J: Development of stamen primordia showing filament and anther chamber; K-L: Development of ovule primordia. The marks in the picture are as follows: C: Carpellary primordia; Fi: Filament; Oa: Ovary wall; Ov: Ovule primordia; Pe: Petal primordia; St: Stamen primordia; Sti: Stigma; V: Ventral suture.
图 3 胚珠原基、雌蕊和雄蕊发育过程
注:A:子房横切面,胚珠原基从心皮腹缝线处发生;B~C:胚珠原基进一步发育;D:胚珠原基分化出胚珠和胚柄;E:成熟的胚珠;F:发育中的花柱道和雄蕊;G:发育中的柱头;H:发育中的雄蕊;I:雄蕊横切面,示4个花粉囊;J:成熟的柱头;K:发育中的胚珠和子房上部;L:成熟的花柱道横切面和纵切面,示通道细胞。图片内标记如下:An:花药囊;Fi:花丝;Fu:珠柄;O:子房;Oa:子房壁;Ov:胚珠原基;Ovu:胚珠;Pe:花瓣;Sc:花柱道;St:雄蕊;Sti:柱头;Sty:花柱;V:腹缝线。
Figure 3. Development of ovule primordia, stamen, and pistil
Note: A: Transverse section of ovary showing initiation of ovule primordia from ventral suture; B-C: Development of ovule primordia; D: Initiation of ovule and filament; E: Mature ovule; F: Development of stylar cannal; G: Development of stigma; H: Development of stamen; I: Transverse section of stamen showing 4 anther chambers; J: Mature stigma; K: Developing ovule and ovary; L: Transverse and longitudinal sections of style showing passage cells. The marks in the picture are as follows: An: Anther chamber; Fi: Filament; Fu: Funiculus; O: Ovary; Oa: Ovary wall; Ov: Ovule primordia; Ovu: Ovule; Pe: Petal; Sc: Stylar canal; St: Stamen; Sti: Stigma; Sty: Style; V: Ventral suture.
-
[1] Drew R A, Azimitabrizi M. Micropropagation of red pitaya (Hylocereous undatus) [J]. Proceedings of the International Symposium on Tropical & Subtropical Fruit, 2002, 575: 93-98. [2] MENEZES T P, PIO L A S, RAMOS J D, et al. Endoreduplication in floral structure, vegetative and fruits of red pitaya with white pulp [J]. Bioscience Journal, 2016, 32(4): 931−939. [3] Xiong R, Liu C, Xu M, et al. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season [J]. BMC genomics, 2020, 21: 329. doi: 10.1186/s12864-020-6726-6 [4] 徐慧, 王秋玲, 韦刚, 等. 火龙果的保健功效及其研究进展 [J]. 广西科学院学报, 2010, 26(3):383−385.XU H, WANG Q L, WEI G, et al. The health benefits and research progress of pitaya [J]. Journal of Guangxi Academy of Sciences, 2010, 26(3): 383−385.(in Chinese [5] 蔡永强, 向青云, 陈家龙, 等. 火龙果的营养成分分析 [J]. 经济林研究, 2008, 26(4):53−56.CAI Y Q, XIANG Q Y, CHEN J L, et al. Analysis of nutritional components in pitaya fruit [J]. Nonwood Forest Research, 2008, 26(4): 53−56.(in Chinese [6] 刘成立, 王猛, 郭攀阳, 等. 火龙果花和果实的动态发育规律研究 [J]. 海南大学学报(自然科学版), 2020, 38(2):147−152.LIU C L, WANG M, GUO P Y, et al. Dynamic development curves and morphological characteristics of the flower and fruit in pitaya (Hylocereus polyrhizus) [J]. Natural Science Journal of Hainan University, 2020, 38(2): 147−152.(in Chinese [7] 孙佩光, 程志号, 李洪立, 等. 大红火龙果花粉离体萌发条件的优化及其活力测定方法筛选 [J]. 贵州农业科学, 2020, 48(5):112−115, 173.SUN P G, CHEN Z H, LI H L, et al. Optimization of in vitro pollen germination conditions and determination method screening of pollen viability in Hylocereus monacanthus [J]. Guizhou Agricultural Sciences, 2020, 48(5): 112−115, 173.(in Chinese [8] 王玉林, 胡位荣, 刘顺枝, 等. 硼酸、蔗糖和pH值对火龙果花粉离体萌发和花粉管伸长的影响 [J]. 分子植物育种, 2018, 16(1):240−247.WANG Y L, HU W R, LIU S Z, et al. Effects of boric acid, sugar and pH on in vitro pollen germination and pollen tube length of pitaya [J]. Molecular Plant Breeding, 2018, 16(1): 240−247.(in Chinese [9] 赵志平, 张阳梅. 红肉型火龙果雨季授粉技术研究 [J]. 热带作物学报, 2013, 34(2):223−227.ZHAO Z P, ZHANG Y M. Pollination technique of pitaya with red pericarp and flesh in rainy season [J]. Chinese Journal of Tropical Crops, 2013, 34(2): 223−227.(in Chinese [10] 程志号, 李淑霞, 孙佩光, 等. 小果野蕉(Musa acuminata Colla)花粉母细胞减数分裂过程异常的细胞学观察 [J]. 热带作物学报, 2018, 39(11):2215−2219.CHENG Z H, LI S X, SUN P G, et al. Cytogenetic analysis of male meiosis defect in Xiaoguo wild banana (Musa acuminata Colla) [J]. Chinese Journal of Tropical Crops, 2018, 39(11): 2215−2219.(in Chinese [11] 王鑫, 肖德兴, 刘勇, 等. 火龙果的小孢子发生和雄配子形成 [J]. 果树学报, 2007, 24(4):541−544.WANG X, XIAO D X, LIU Y, et al. Microsporogenesis and development of male gamete in Hylocereus undatus [J]. Journal of Fruit Science, 2007, 24(4): 541−544.(in Chinese [12] 范建新, 邓仁菊, 王永清, 等. 火龙果小孢子不同发育时期的形态特征 [J]. 分子植物育种, 2017, 15(2):710−715.FAN J X, DENG R J, WANG Y Q, et al. Morphological characteristics of pitaya microspore at different developmental stages [J]. Molecular Plant Breeding, 2017, 15(2): 710−715.(in Chinese [13] 匡石滋, 田世尧, 段冬洋, 等. 火龙果液体授粉组合的优化及其效应研究 [J]. 热带作物学报, 2016, 37(1):70−74.KUANG S Z, TIAN S Y, DUAN D Y, et al. Composition optimization of pollen liquid for Hylocereus undatus and its pollination efficiency [J]. Chinese Journal of Tropical Crops, 2016, 37(1): 70−74.(in Chinese [14] 刘友接, 熊月明, 黄雄峰, 等. 授粉品种对富贵红火龙果果实主要性状的影响 [J]. 福建农业学报, 2017, 32(8):859−863.LIU Y J, XIONG Y M, HUANG X F, et al. Effect of pollinating parents on fruit properties of fuguihong pitaya [J]. Fujian Journal of Agricultural Sciences, 2017, 32(8): 859−863.(in Chinese [15] 陈丹, 范万新, 欧善生, 等. 不同光质LED灯对火龙果补光催花试验 [J]. 气象研究与应用, 2019, 40(2):51−55.CHEN D, FAN W X, OU S S, et al. Experiments on light supplementary and flowering promotion of pitaya fruit by different light quality LED lamps [J]. Journal of Meteorological Research and Application, 2019, 40(2): 51−55.(in Chinese [16] 陈心源, 田忍国, 沈林章, 等. 不同蓝红光比例发光二极管对火龙果花芽分化和果实品质的影响 [J]. 浙江大学学报(农业与生命科学版), 2019, 45(1):14−22.CHEN X Y, TIAN R G, SHEN L Z, et al. Effect of the blue-red light ratio in supplemental light-emitting diode on pitaya flower bud differentiation and fruit quality [J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2019, 45(1): 14−22.(in Chinese [17] 孟娟, 贾兵, 衡伟, 等. 砀山酥梨花芽分化及开花物候期观察研究 [J]. 安徽林业科技, 2012, 38(1):15−19.MENG J, JIA B, HENG W, et al. Observational research on flower bud differentiation and flower phenophase of pear variety Dandshansuli [J]. Anhui Forestry Science and Technology, 2012, 38(1): 15−19.(in Chinese [18] 程和禾, 陈龙, 李玉生, 等. 温室甜樱桃花芽形态分化观察 [J]. 果树学报, 2018, 35(11):1393−1398.CHENG H H, CHEN L, LI Y S, et al. Observation on the morphological differentiation of flower buds of sweet cherries in a greenhouse [J]. Journal of Fruit Science, 2018, 35(11): 1393−1398.(in Chinese [19] 魏雅君, 廖康, 李雯雯, 等. 杏李花芽分化的组织解剖学研究 [J]. 果树学报, 2017, 34(7):843−850.WEI Y J, LIAO K, LI W W, et al. An anatomical study on flower bud differentiation in Prunus salicina × Armeniaca [J]. Journal of Fruit Science, 2017, 34(7): 843−850.(in Chinese [20] 刘俊松, 张上隆. 柑橘花芽分化期结果和未结果树氨基酸含量变化 [J]. 西南大学学报(自然科学版), 2008, 30(2):71−76.LIU J S, ZHANG S L. Variation in amino acid contents in the bearing and non-bearing mandarin trees during flower-bud differentiation [J]. Journal of Southwest University (Natural Science Edition), 2008, 30(2): 71−76.(in Chinese [21] 中国科学院中国植物志编辑委员会, 中国植物志 [M].科学出版社, 1999, 52(1): 283–284. [22] 孙佩光, 奚如春, 钟燕梅, 等. 广宁红花油茶花器官发生 [J]. 华南农业大学学报, 2012, 33(4):507−512.SUN P G, XI R C, ZHONG Y M, et al. Floral organogenesis in Camellia semiserrata [J]. Journal of South China Agricultural University, 2012, 33(4): 507−512.(in Chinese [23] 姜建福, 赵长竹, 李金强, 等. 郑州地区甜樱桃花芽形态分化的观察 [J]. 果树学报, 2009, 26(4):466−470.JIANG J F, ZHAO C Z, LI J Q, et al. Observation of the flower bud morphological differentiation in sweet cherry in Zhengzhou [J]. Journal of Fruit Science, 2009, 26(4): 466−470.(in Chinese