• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于转录组的三月李及其红肉突变体Expansin基因家族鉴定及分析

方智振 林炎娟 姜翠翠 周丹蓉 潘少霖 叶新福

方智振,林炎娟,姜翠翠,等. 基于转录组的三月李及其红肉突变体 Expansin基因家族鉴定及分析 [J]. 福建农业学报,2020,35(9):919−928 doi: 10.19303/j.issn.1008-0384.2020.09.001
引用本文: 方智振,林炎娟,姜翠翠,等. 基于转录组的三月李及其红肉突变体 Expansin 基因家族鉴定及分析 [J]. 福建农业学报,2020,35(9):919−928 doi: 10.19303/j.issn.1008-0384.2020.09.001
FANG Z Z, LIN Y J, JIANG C C, et al. Identification and Analysis of Expansins in the Transcriptome of Sanyueli Plum and Its Red-flesh Mutant [J]. Fujian Journal of Agricultural Sciences,2020,35(9):919−928 doi: 10.19303/j.issn.1008-0384.2020.09.001
Citation: FANG Z Z, LIN Y J, JIANG C C, et al. Identification and Analysis of Expansins in the Transcriptome of Sanyueli Plum and Its Red-flesh Mutant [J]. Fujian Journal of Agricultural Sciences,2020,35(9):919−928 doi: 10.19303/j.issn.1008-0384.2020.09.001

基于转录组的三月李及其红肉突变体Expansin基因家族鉴定及分析

doi: 10.19303/j.issn.1008-0384.2020.09.001
基金项目: 福建省科技计划公益类专项(2018R1013-4、2018R1013-1);福建省自然科学基金项目(30471225);福建省农业科学院青年英才计划项目(YC2015-9);福建省农业科学院创新团队建设项目(STIT2017-1-4)
详细信息
    作者简介:

    方智振(1985−),男,博士,副研究员,研究方向:果树遗传育种与生物技术(E-mail:fzhzh2008@163.com

    通讯作者:

    叶新福(1967−),男,博士,研究员,研究方向:作物品质遗传育种研究(E-mail:yexinfu@126.com

  • 中图分类号: S 662.3

Identification and Analysis of Expansins in the Transcriptome of Sanyueli Plum and Its Red-flesh Mutant

  • 摘要:   目的  Expansin是广泛存在于植物中的一类细胞壁蛋白,通过调节细胞壁柔韧性在植物生长发育过程中发挥作用。本研究旨在分析Expansin基因家族特征及其在果实成熟过程中的表达模式,并比较Expansin基因在三月李及其红肉突变体之间的差异表达。  方法  基于三月李及其红肉突变体果实成熟过程的转录组数据,采用生物信息学分析方法进行Expansin家族基因鉴定与分析。  结果  鉴定出33个李Expansin基因家族成员,编码蛋白长度在176~460 aa,分子量在19.21~51.33 kD,等电点4.62~9.83,大部分为位于细胞外的稳定亲水蛋白。系统进化树分析表明李Expansin家族成员可分为4个组:22个EXPA、6个EXPB、1个EXPLA和4个EXPLB。所有李Expansin蛋白质均具有保守的DPBB_1和Pollen_allerg_1结构域。保守基序分析表明,同一组Expansin成员具有相似的基序组成。9个Expansin基因在三月李及其红肉突变体果实成熟过程中差异表达。  结论  Expansin在三月李及其红肉突变体果实成熟过程中的表达模式存在显著差异。本研究结果可为解析李Expansin家族基因在果实成熟过程中的功能奠定基础。
  • 图  1  李、桃、拟南芥和水稻Expansin家族蛋白质系统进化树

    注:李Expansin家族蛋白质以粗体表示。

    Figure  1.  Phylogenetic tree of Expansin family in plum, peach, Arabidopsis, and rice

    Note: Expansin in bold font.

    图  2  Expansin家族蛋白质进化树及保守结构域分析

    Figure  2.  Phylogenetic tree and conserved domain of Expansin family

    图  3  李Expansin家族蛋白质保守基序及结构域序列Logo

    注:A:李Expansin家族蛋白质保守元件分布;B:李Expansin家族蛋白质保守元件序列特征。

    Figure  3.  Conserved motifs and domain sequence logo of Expansin family

    Note:A:Distribution of the identified motifs in plum Expansin family proteins. B:The sequence constitution of identified motifs in plum Expansin family proteins.

    图  4  李Expansin家族蛋白质的多重序列比对

    注: Expansin蛋白质的保守结构域用黑色横线标出,上方的红色字表示保守的氨基酸残基。

    Figure  4.  Multiple sequence alignment analysis on Expansin family

    Note: Conserved domains in Expansin indicated by horizontal black lines, and conserved amino acid residues by red letters.

    图  5  Expansin家族基因在三月李及其红肉突变体果实成熟过程中的表达模式

    注:上图基于三月李及其红肉突变体果实成熟过程的转录组数据计算得出。所有基因的FPKM值采用每个基因的最大FPKM值进行均一化处理。基因的表达水平由不同大小和颜色的实心圆表示,实心圆越大,表达量越高。右侧的数值为每个基因的最大FPKM值。

    Figure  5.  Expression pattern of Expansins in Sanyueli plum and its red-flesh mutant during fruit ripening

    Note:Based on the transcriptome data of Sanyueli and the red-fleshed mutant fruits during ripening. All FPKM values of all genes were normalized with maximum FPKM values of each gene. The expression level of genes was indicated using filled circle with different size and colour. The larger the circle, the higher the expression. The values on the right indicates the highest FPKM value of each gene.

    表  1  三月李及其红肉突变体Expansin蛋白质的理化性质和亚细胞定位

    Table  1.   Physicochemical properties and subcellular localization of Expansins in Sanyueli plum and its red-flesh mutant

    序列编号
    Sequnce ID
    蛋白质长度
    Protein length/aa
    分子量
    Molecular weight/kD
    等电点
    pI
    不稳定系数
    Instability index
    脂肪系数
    Aliphatic index
    平均亲水系数
    Grand average of hydropathicity
    细胞定位
    Cell location
    EVM001161525226.789.3635.764.29−0.100Extracellular
    EVM001578525226.746.9231.3266.23−0.108Extracellular
    EVM000446125427.278.4330.2663.43−0.194Extracellular
    EVM002797725427.278.4330.2663.43−0.194Extracellular
    EVM000951525727.478.7935.4674.47−0.039Extracellular
    EVM000846825727.508.9334.9474.47−0.042Extracellular
    EVM000992325727.749.1432.8867.24−0.095Extracellular
    EVM001071025827.948.5927.9164.69−0.066Extracellular
    EVM002541525928.398.8922.273.9−0.118Extracellular
    EVM001951725928.398.8922.273.9−0.118Extracellular
    EVM002220225927.849.4133.2371.2−0.010Extracellular
    EVM000239026027.999.4734.7168.65−0.007Extracellular
    EVM001735726028.748.0717.3866.81−0.226Extracellular
    EVM001862726129.249.3533.3669.12−0.338Extracellular
    EVM001664626328.999.2235.7165.320.006Extracellular
    EVM002618326529.189.8345.1773.21−0.057Extracellular
    EVM001677726628.748.433.5286.540.065Extracellular
    EVM001088128231.129.0929.3862.27−0.388Extracellular
    EVM002837129131.895.7739.0872.03−0.337Extracellular
    EVM001855735337.159.2445.0376.26−0.001Extracellular
    EVM000165136740.659.5348.2883.41−0.018Extracellular
    EVM002035646051.338.6746.3175.07−0.258Plasma membrane, Extracellular
    EVM001421717619.214.9836.0877.1−0.137Extracellular
    EVM001607826628.478.9528.9182.44−0.032Extracellular
    EVM000054827228.584.6243.4776.4−0.027Extracellular
    EVM000685128030.105.9436.9270.07−0.168Extracellular
    EVM002259628230.337.5235.1872.02−0.142Extracellular
    EVM002654529631.928.6241.7967.64−0.269Extracellular
    EVM002499626028.168.7337.2685.620.035Extracellular
    EVM002606225228.006.8730.369.33−0.309Extracellular
    EVM002834025228.006.8730.369.33−0.309Extracellular
    EVM000380525228.006.8730.369.33−0.309Extracellular
    EVM001316025527.744.7838.3875.33−0.170Extracellular
    下载: 导出CSV
  • [1] BRUMMELL D A. Cell wall disassembly in ripening fruit [J]. Functional Plant Biology, 2006, 33(2): 103−119. doi: 10.1071/FP05234
    [2] 孙振营, 韩叶, 李秀芳, 等. 柿采后丙烯和1-甲基环丙烯处理对两个扩展蛋白基因表达的影响 [J]. 园艺学报, 2014, 41(6):1089−1095.

    SUN Z Y, HAN Y, LI X F, et al. Effects of propylene and 1-methylcyclopropene on expression of two EXP genes in persimmon fruits [J]. Acta Horticulturae Sinica, 2014, 41(6): 1089−1095.(in Chinese
    [3] SANE V A, CHOURASIA A, NATH P. Softening in mango (Mangifera indica cv. Dashehari) is correlated with the expression of an early ethylene responsive, ripening related expansin gene, MiExpA1 [J]. Postharvest Biology and Technology, 2005, 38(3): 223−230. doi: 10.1016/j.postharvbio.2005.07.008
    [4] SHEN W B, LI C R, CHEN J Y, et al. Expansin gene expression in cherimoya fruit is correlated with flesh firmness during fruit ripening and softening [J]. The Journal of Horticultural Science and Biotechnology, 2009, 84(3): 333−339. doi: 10.1080/14620316.2009.11512527
    [5] BRUMMELL, HARPSTER, CIVELLO, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening [J]. The Plant Cell, 1999, 11(11): 2203−2216. doi: 10.1105/tpc.11.11.2203
    [6] MINOIA S, BOUALEM A, MARCEL F, et al. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening [J]. Plant Science, 2016, 242: 195−202. doi: 10.1016/j.plantsci.2015.07.001
    [7] JIANG F L, LOPEZ A, JEON S, et al. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking [J]. Horticulture Research, 2019, 6(1): 17. doi: 10.1038/s41438-018-0105-3
    [8] GAETE-EASTMAN C, FIGUEROA C R, BALBONTÍN C, et al. Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens) [J]. Postharvest Biology and Technology, 2009, 53(1): 58−65.
    [9] VALENZUELA-RIFFO F, PARRA-PALMA C, RAMOS P, et al. Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit [J]. Plant Physiology and Biochemistry, 2020, 154: 581−589. doi: 10.1016/j.plaphy.2020.06.010
    [10] COSGROVE D J. Growth of the plant cell wall [J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850−861. doi: 10.1038/nrm1746
    [11] COSGROVE D J. Plant expansins: Diversity and interactions with plant cell walls [J]. Current Opinion in Plant Biology, 2015, 25: 162−172. doi: 10.1016/j.pbi.2015.05.014
    [12] SAMPEDRO J, COSGROVE D J. The expansin superfamily [J]. Genome Biology, 2005, 6(12): 242. doi: 10.1186/gb-2005-6-12-242
    [13] HOU L, ZHANG Z Y, DOU S H, et al. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.) [J]. Planta, 2019, 249(3): 815−829. doi: 10.1007/s00425-018-3020-9
    [14] HAN Z S, LIU Y L, DENG X, et al. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.) [J]. BMC Genomics, 2019, 20(1): 1−19. doi: 10.1186/s12864-018-5379-1
    [15] YENNAWAR N H, LI L C, DUDZINSKI D M, et al. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize [J]. PNAS, 2006, 103(40): 14664−14671. doi: 10.1073/pnas.0605979103
    [16] LI Y, JONES L, MCQUEEN-MASON S. Expansins and cell growth [J]. Current Opinion in Plant Biology, 2003, 6(6): 603−610. doi: 10.1016/j.pbi.2003.09.003
    [17] GOH H H, SLOAN J, DORCA-FORNELL C, et al. Inducible repression of multiple expansin genes leads to growth suppression during leaf development [J]. Plant Physiology, 2012, 159(4): 1759−1770. doi: 10.1104/pp.112.200881
    [18] LÜ P, KANG M, JIANG X Q, et al. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis [J]. Planta, 2013, 237(6): 1547−1559. doi: 10.1007/s00425-013-1867-3
    [19] CHO H T, COSGROVE D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis [J]. The Plant Cell, 2002, 14(12): 3237−3253. doi: 10.1105/tpc.006437
    [20] CHE J, YAMAJI N, SHEN R F, et al. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice [J]. The Plant Journal, 2016, 88(1): 132−142. doi: 10.1111/tpj.13237
    [21] HAYAMA H, SHIMADA T, FUJII H, et al. Ethylene-regulation of fruit softening and softening-related genes in peach [J]. Journal of Experimental Botany, 2006, 57(15): 4071−4077. doi: 10.1093/jxb/erl178
    [22] SCHLOSSER J, OLSSON N, WEIS M, et al. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.) [J]. Protoplasma, 2008, 232(3): 255−265.
    [23] NARDI C F, VILLARREAL N M, ROSSI F R, et al. Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism [J]. Plant Molecular Biology, 2015, 88(1): 101−117.
    [24] PALAPOL Y, KUNYAMEE S, THONGKHUM M, et al. Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit [J]. Journal of Plant Physiology, 2015, 182: 33−39. doi: 10.1016/j.jplph.2015.04.005
    [25] PERINI M A, SIN I N, VILLARREAL N M, et al. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1(Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility [J]. Plant Physiology and Biochemistry, 2017, 113: 122−132. doi: 10.1016/j.plaphy.2017.01.029
    [26] XIE H, CHEN J Y, YUAN R C, et al. Differential expression and regulation of expansin gene family members during fruit growth and development of ‘Shijia’ longan fruit [J]. Plant Growth Regulation, 2009, 58(3): 225−233. doi: 10.1007/s10725-009-9370-3
    [27] COX M C H, BENSCHOP J J, VREEBURG R A M, et al. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles [J]. Plant Physiology, 2004, 136(2): 2948−2960. doi: 10.1104/pp.104.049197
    [28] PARK C H, KIM T W, SON S H, et al. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana [J]. Phytochemistry, 2010, 71(4): 380−387. doi: 10.1016/j.phytochem.2009.11.003
    [29] VREEBURG R A M, BENSCHOP J J, PEETERS A J M, et al. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris [J]. The Plant Journal, 2005, 43(4): 597−610. doi: 10.1111/j.1365-313X.2005.02477.x
    [30] LEE A, GIORDANO W, HIRSCH A M. Cytokinin induces expansin gene expression in Melilotus alba Desr. wild-type and the non-nodulating, non-mycorrhizal (Nod-Myc-) mutant Masym3 [J]. Plant Signaling & Behavior, 2008, 3(4): 218−223.
    [31] LEE Y, CHOI D, KENDE H. Expansins: ever-expanding numbers and functions [J]. Current Opinion in Plant Biology, 2001, 4(6): 527−532. doi: 10.1016/S1369-5266(00)00211-9
    [32] DING A M, MAROWA P, KONG Y Z. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum) [J]. Molecular Genetics and Genomics, 2016, 291(5): 1891−1907. doi: 10.1007/s00438-016-1226-8
    [33] 施杨, 徐筱, 李昊阳, 等. 水稻扩展蛋白家族的生物信息学分析 [J]. 遗传, 2014, 36(8):809−820.

    SHI Y, XU X, LI H Y, et al. Bioinformatics analysis of the expansin gene family in rice [J]. Hereditas, 2014, 36(8): 809−820.(in Chinese
    [34] LI N N, PU Y Y, GONG Y C, et al. Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum [J]. Genes & Genomics, 2016, 38(11): 1021−1030.
    [35] LU Y, LIU L F, WANG X, et al. Genome-wide identification and expression analysis of the expansin gene family in tomato [J]. Molecular Genetics and Genomics, 2016, 291(2): 597−608. doi: 10.1007/s00438-015-1133-4
    [36] 李昊阳, 施杨, 丁亚娜, 等. 杨树扩展蛋白基因家族的生物信息学分析 [J]. 北京林业大学学报, 2014, 36(2):59−67.

    LI H Y, SHI Y, DING Y N, et al. Bioinformatics analysis of expansin gene family in poplar genome [J]. Journal of Beijing Forestry University, 2014, 36(2): 59−67.(in Chinese
    [37] DAL SANTO S, VANNOZZI A, TORNIELLI G B, et al. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics [J]. PLoS One, 2013, 8(4): e62206. doi: 10.1371/journal.pone.0062206
    [38] ZHANG S Z, XU R R, GAO Z, et al. A genome-wide analysis of the expansin genes in Malus × domestica [J]. Molecular Genetics and Genomics, 2014, 289(2): 225−236. doi: 10.1007/s00438-013-0796-y
    [39] 张倩, 曹珂, 朱更瑞, 等. 桃EXPANSIN基因家族序列特征及其在根结线虫侵染后的诱导表达分析 [J]. 果树学报, 2018, 35(1):1−10.

    ZHANG Q, CAO K, ZHU G R, et al. The sequence characters of EXPANSIN genes and the analysis of their induced expression after the infection of root-knot Nematodes in peach [J]. Journal of Fruit Science, 2018, 35(1): 1−10.(in Chinese
    [40] 方智振, 叶新福, 周丹蓉, 等. 辐射三月李红肉迟熟突变体的ISSR分析 [J]. 核农学报, 2016, 30(2):209−215.

    FANG Z Z, YE X F, ZHOU D R, et al. ISSR analysis on red-flesh and late-ripening mutant of Sanyue plum (Prunus salicina Lindl.) induced by irradiation [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(2): 209−215.(in Chinese
    [41] 方智振, 姜翠翠, 周丹蓉, 等. 基于转录组的‘三月李’及其红肉突变体ARF基因家族鉴定及分析 [J]. 应用与环境生物学报, 2019, 25(6):1388−1395.

    FANG Z Z, JIANG C C, ZHOU D R, et al. Analysis of the ARF gene family of 'Sanyueli' plum (Prunus salicina Lindl.) and its red-fleshed mutant based on transcriptome [J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(6): 1388−1395.(in Chinese
    [42] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [43] CAREY R E, COSGROVE D J. Portrait of the expansin superfamily in Physcomitrella patens: Comparisons with angiosperm expansins [J]. Annals of Botany, 2007, 99(6): 1131−1141. doi: 10.1093/aob/mcm044
    [44] 姜志磊, 周琳, 武奉慈, 等. 玉米扩展蛋白Expansin基因家族定位及基因表达模式分析 [J]. 生物技术进展, 2018, 8(1):34−40.

    JIANG Z L, ZHOU L, WU F C, et al. Analysis of location and expression pattern of maize expansin gene family [J]. Current Biotechnology, 2018, 8(1): 34−40.(in Chinese
    [45] 郝西, 理向阳, 腊贵晓, 等. 黄瓜扩展蛋白基因家族的鉴定与生物信息学分析 [J]. 分子植物育种, 2015, 13(10):2280−2289.

    HAO X, LI X Y, LA G X, et al. Identification and bioinformatic analysis of the expansin gene family in cucumber [J]. Molecular Plant Breeding, 2015, 13(10): 2280−2289.(in Chinese
    [46] ZHANG J F, XU Y Q, DONG J M, et al. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars [J]. PLoS One, 2018, 13(3): e0195138. doi: 10.1371/journal.pone.0195138
    [47] ROSE J K C, LEE H H, BENNETT A B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated [J]. PNAS, 1997, 94(11): 5955−5960. doi: 10.1073/pnas.94.11.5955
    [48] HARRISON E P, MCQUEEN-MASON S J, MANNING K. Expression of six expansin genes in relation to extension activity in developing strawberry fruit [J]. Journal of Experimental Botany, 2001, 52(360): 1437−1446. doi: 10.1093/jexbot/52.360.1437
    [49] MBÉGUIÉ-A-MBÉGUIÉ D, GOUBLE B, GOMEZ R M, et al. Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene [J]. Plant Physiology and Biochemistry, 2002, 40(5): 445−452. doi: 10.1016/S0981-9428(02)01391-8
    [50] HAYAMA H, ITO A, MORIGUCHI T, et al. Identification of a new expansin gene closely associated with peach fruit softening [J]. Postharvest Biology and Technology, 2003, 29(1): 1−10. doi: 10.1016/S0925-5214(02)00216-8
    [51] TRIVEDI P K, NATH P. MaExp1, an ethylene-induced expansin from ripening banana fruit [J]. Plant Science, 2004, 167(6): 1351−1358. doi: 10.1016/j.plantsci.2004.07.005
    [52] ZERPA-CATANHO D, ESQUIVEL P, MORA-NEWCOMER E, et al. Transcription analysis of softening-related genes during postharvest of papaya fruit (Carica papaya L. ‘Pococí’ hybrid) [J]. Postharvest Biology and Technology, 2017, 125: 42−51. doi: 10.1016/j.postharvbio.2016.11.002
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  337
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-07-24
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回