• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同质粒载体对GFP单基因瞬时转染ExpiCHO-S细胞表达量的影响

王妍 张超林 王娟 邓跃 苏晓蕊 谭菲菲 田克恭

王妍,张超林,王娟,等. 不同质粒载体对 GFP单基因瞬时转染ExpiCHO-S细胞表达量的影响 [J]. 福建农业学报,2020,35(8):851−856 doi: 10.19303/j.issn.1008-0384.2020.08.006
引用本文: 王妍,张超林,王娟,等. 不同质粒载体对 GFP 单基因瞬时转染ExpiCHO-S细胞表达量的影响 [J]. 福建农业学报,2020,35(8):851−856 doi: 10.19303/j.issn.1008-0384.2020.08.006
WANG Y, ZHANG C L, WANG J, et al. Effects of Vectors on Transient Expression of GFP in CHO Cells [J]. Fujian Journal of Agricultural Sciences,2020,35(8):851−856 doi: 10.19303/j.issn.1008-0384.2020.08.006
Citation: WANG Y, ZHANG C L, WANG J, et al. Effects of Vectors on Transient Expression of GFP in CHO Cells [J]. Fujian Journal of Agricultural Sciences,2020,35(8):851−856 doi: 10.19303/j.issn.1008-0384.2020.08.006

不同质粒载体对GFP单基因瞬时转染ExpiCHO-S细胞表达量的影响

doi: 10.19303/j.issn.1008-0384.2020.08.006
基金项目: 河南省重大科技项目(181200211700)
详细信息
    作者简介:

    王妍(1994−),女,硕士研究生,研究方向:动物传染病(E-mail:869859241@qq.com

    通讯作者:

    谭菲菲(1983−),女,博士,研究方向:CHO系统重组蛋白的表达、纯化及工艺研究(E-mail:tf0801@126.com

    田克恭(1964−),男,研究员,研究方向:动物疫病诊断检测与防治技术研究(E-mail:vetvac@126.com

  • 中图分类号: S 855.3

Effects of Vectors on Transient Expression of GFP in CHO Cells

  • 摘要:   目的  ExpiCHO细胞瞬时表达能够快速有效地生产重组蛋白,为筛选有效的重组蛋白节省了大量的时间,细胞系的选择、表达载体的选择、转染试剂的选择等是制约ExpiCHO细胞瞬时表达蛋白的重要因素,本研究旨在筛选出在CHO细胞中瞬时表达量较高的载体。  方法  以GFP基因作为目的基因,用不同的真核表达载体构建GFP重组质粒,瞬时转染ExpiCHO-S细胞。转染后4 d观察不同载体表达GFP的荧光数量和强度;转染后8 d对细胞进行裂解,收获裂解上清,用SDS-PAGE对不同载体的表达量进行鉴定。同时用His Trap FF亲和层析柱对裂解上清中的GFP蛋白进行纯化,通过Western Blot比较不同载体GFP蛋白的表达量。  结果  pCDNA3.1-GFP、pCDNA3.4-GFP载体表达的荧光数量最多,pCIneo-GFP载体表达的荧光强度最强,pCMVHA载体表达的荧光数量最少,荧光强度最弱。SDS-PAGE和Western Blot结果均表明pCDNA3.1-GFP、pCDNA3.4-GFP、pCIneo-GFP重组质粒的蛋白表达量高于pCHO-GFP、pCMVHA-GFP重组质粒的蛋白表达量。  结论  筛选出表达量较高的真核表达载体pCDNA3.1、pCDNA3.4、pCIneo,为后续重组蛋白的瞬时表达载体选择提供依据。
  • 图  1  不同载体构建GFP重组质粒双酶切结果

    注:M1:DNA Marker;1:pCHO-GFP重组质粒酶切;2:pCDNA3.1-GFP重组质粒酶切;3:pCDNA3.4-GFP重组质粒酶切;4:pCIneo-GFP重组质粒酶切;5:pCMVHA-GFP重组质粒酶切;M2:DNA Marker。

    Figure  1.  Restriction map of GFP recombinant plasmids carried by different vectors

    Note: M1: DNA marker; 1: digestion site for pCHO-GFP recombinant plasmid; 2: digestion site for pCDNA3.1-GFP recombinant plasmid; 3: digestion site for pCDNA3.4-GFP recombinant plasmid; 4: digestion site for pCIneo-GFP recombinant plasmid; 5: digestion site for pCMVHA-GFP recombinant plasmid; M2: DNA marker.

    图  2  不同载体表达GFP蛋白的荧光反应

    Figure  2.  Fluorescence of GFP expressed by different vectors

    图  3  SDS-PAGE分析转染后4 d GFP蛋白的表达

    注:M:Protein Marker;1:ExpiCHO细胞裂解上清;2:pCDNA3.1-GFP细胞裂解上清;3:pCDNA3.4-GFP细胞裂解上清;4:pCIneo-GFP细胞裂解上清;5:pCHO-GFP细胞裂解上清;6:pCMVHA-GFP细胞裂解上清。

    Figure  3.  SDS-PAGE on GFP expression 4 d after transfection

    Note: M: Protein marker; 1: ExpiCHO cell lysate supernatant; 2: cell lysate supernatant (pCDNA3.1-GFP); 3: cell lysate supernatant (pCDNA3.4-GFP); 4: cell lysate supernatant (pCIneo-GFP); 5: cell lysate supernatant (pCHO-GFP); 6: cell lysate supernatant (pCMVHA-GFP).

    图  4  Western Blot分析纯化后的GFP蛋白

    注:1:ExpiCHO细胞裂解上清;2:GFP蛋白(pCMVHA)纯化后;3:GFP蛋白(pCHO)纯化后;4:GFP蛋白(pCIneo)纯化后;5:GFP蛋白(pCDNA3.4)纯化后;6:GFP蛋白(pCDNA3.1)纯化后;M:Protein Marker。

    Figure  4.  Western blot on purified GFP protein

    Note: 1: ExpiCHO cell lysate supernatant; 2: purified GFP protein (pCMVHA); 3: purified GFP protein (pCHO); 4: purified GFP protein (pCIneo); 5: purified GFP protein (pCDNA3.4); 6: purified GFP protein (pCDNA3.1); M: Protein marker.

    表  1  不同载体的酶切位点及引物序列

    Table  1.   Digestion sites and primer sequences on different vectors

    载体名
    Vectors
    上游引物序列
    Sequence of upstream primers
    下游引物序列
    Sequence of downstream primers
    上游酶切位点
    Upstream restriction site
    下游酶切位点
    Downstream cleavage site
    pCDNA3.1 CTAGCTAGCATGGTGAGCAAGGGCGCCGAGCTGTTCACCGGCATC CGGCTCGAGTTAATGATGATGATGATGATGCTTGTACAGCTCATC Nhe I Xho I
    pCDNA3.4 CTAGTCTAGAATGGTGAGCAAGGGCGCCGAGCTGTTCACCGGCAT GGGAAGCTTTTAATGATGATGATGATGATGCTTGTACAGCTCATC Xba I Hind III
    pCMVHA CCGGAATTCGCATGGTGAGCAAGGGCGCCGAGCTGTTCACCGGCA CGGCTCGAGTTAATGATGATGATGATGATGCTTGTACAGCTCATC Eco RI Xho I
    pCIneo CTAGCTAGCATGGTGAGCAAGGGCGCCGAGCTGTTCACCGGCATC CGGCTCGAGTTAATGATGATGATGATGATGCTTGTACAGCTCATC Nhe I Xho I
    pCHO1.0 CCGCCTAGGGCCACCATGGTGAGCAAGGGCGCCGAGCTGTTCACC CGGGTATACTTAATGATGATGATGATGATGCTTGTACAGCTCATC Avr II Bstz 17I
    注:斜体碱基为酶切位点。
    Note: The italic bases are restriction sites.
    下载: 导出CSV

    表  2  不同载体片段大小

    Table  2.   Fragment sizes of different vectors

    载体名称 Vectors载体大小 Vectors size/bp
    pCDNA3.15 333
    pCDNA3.46 010
    pCMVHA3 782
    pCIneo5 747
    pCHO12 988
    下载: 导出CSV

    表  3  不同载体表达GFP蛋白的荧光细胞数

    Table  3.   Number of fluorescent cells expressing GFP by different vectors

    GFP蛋白表达载体
    GFP protein
    expression vector
    荧光细胞数量
    The number of
    fluorescent cells
    pCDNA3.1 168
    pCDNA3.4 110
    pCIneo 47
    pCHO 151
    pCMVHA 58
    下载: 导出CSV

    表  4  不同载体表达GFP蛋白的灰度比值

    Table  4.   Gray ratio of vectors expressing GFP

    GFP蛋白表达载体
    GFP protein expression vector
    灰度比值
    Gray ratio
    pCMVHA 1.00
    pCHO 1.36
    pCIneo 2.13
    pCDNA3.4 2.68
    pCDNA3.1 3.19
    下载: 导出CSV
  • [1] 郭景亮. 中国仓鼠卵巢细胞表达外源蛋白研究进展 [J]. 生物技术世界, 2016(4):321.

    GUO J L. Research progress of foreign protein expression in Chinese hamster ovary cells [J]. Biotech World, 2016(4): 321.(in Chinese)
    [2] 温家明, 聂艳峰, 梁翰章, 等. MG-132提高TNFR-Fc融合蛋白在CHO细胞中表达的研究 [J]. 中国生物工程杂志, 2015, 35(9):1−6.

    WEN J M, NIE Y F, LIANG H Z, et al. MG-132 improve the production of TNFR-Fc fusion protein in CHO cells [J]. China Biotechnology, 2015, 35(9): 1−6.(in Chinese)
    [3] 韩阳, 蔡洁行, 张朗, 等. 重组蛋白的CHO细胞瞬时表达体系的研究进展 [J]. 药物生物技术, 2017, 24(3):243−248.

    HAN Y, CAI J H, ZHANG L, et al. Development of CHO system used for transiently expressing recombinant proteins [J]. Pharmaceutical Biotechnology, 2017, 24(3): 243−248.(in Chinese)
    [4] 孙静静, 李桂林, 周雷鸣, 等. 哺乳动物细胞瞬时转染技术研究进展 [J]. 中国医药生物技术, 2019, 14(3):253−257. doi: 10.3969/j.issn.1673-713X.2019.03.010

    SUN J J, LI G L, ZHOU L M, et al. Advances in transient transfection technology of mammalian cells [J]. Chinese Medicinal Biotechnology, 2019, 14(3): 253−257.(in Chinese) doi: 10.3969/j.issn.1673-713X.2019.03.010
    [5] 刘国奇, 王海涛. 外源蛋白在中国仓鼠卵巢细胞中高效表达的策略 [J]. 生物化学与生物物理进展, 2000, 27(5):496−500. doi: 10.3321/j.issn:1000-3282.2000.05.011

    G Q, WANG H T. Optimized strategies to hyperexpress recombinant protein in Chinese hamster ovary cells [J]. Progress in Biochemistry and Biophysics, 2000, 27(5): 496−500.(in Chinese) doi: 10.3321/j.issn:1000-3282.2000.05.011
    [6] 申烨华, 耿信笃. CHO细胞表达系统研究新进展 [J]. 生物工程进展, 2000, 20(4):23−25, 22. doi: 10.3969/j.issn.1671-8135.2000.04.005

    SHEN Y H, GENG X D. The recent progress in the upstream studies on the culture with CHO cell [J]. Progress in Biotechnology, 2000, 20(4): 23−25, 22.(in Chinese) doi: 10.3969/j.issn.1671-8135.2000.04.005
    [7] OLIVEIRA C, DOMINGUES L. Guidelines to reach high-quality purified recombinant proteins [J]. Applied Microbiology and Biotechnology, 2018, 102(1): 81−92. doi: 10.1007/s00253-017-8623-8
    [8] HEINTZMAN N D, REN B. The gateway to transcription: Identifying, characterizing and understanding promoters in the eukaryotic genome [J]. Cellular and Molecular Life Sciences, 2007, 64(4): 386−400. doi: 10.1007/s00018-006-6295-0
    [9] JAIN N K, BARKOWSKI-CLARK S, ALTMAN R, et al. A high density CHO-S transient transfection system: Comparison of ExpiCHO and Expi293 [J]. Protein Expression and Purification, 2017, 134: 38−46. doi: 10.1016/j.pep.2017.03.018
    [10] KAUFMAN R J, WASLEY L C, SPILIOTES A J, et al. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells [J]. Molecular and Cellular Biology, 1985, 5(7): 1750−1759. doi: 10.1128/MCB.5.7.1750
    [11] 王稳, 王天云. CHO细胞表达系统启动子 [J]. 中国生物化学与分子生物学报, 2019, 35(11):1175−1182.

    WANG W, WANG T Y. Promoters used in the CHO cell expression system [J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(11): 1175−1182.(in Chinese)
    [12] WANG D Y, DAI W, WU J, et al. Improving transcriptional activity of human Cytomegalovirus major immediate-early promoter by mutating NF-κB binding sites [J]. Protein Expression and Purification, 2018, 142: 16−24. doi: 10.1016/j.pep.2017.09.008
    [13] HO S C L, MARIATI, YEO J H M, et al. Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells [J]. Molecular Biotechnology, 2015, 57(2): 138−144. doi: 10.1007/s12033-014-9809-2
    [14] DOVERSKOG M, LJUNGGREN J, ÖHMAN L, et al. Physiology of cultured animal cells [J]. Journal of Biotechnology, 1997, 59(1/2): 103−115.
    [15] RODRIGUEZ J, SPEARMAN M, HUZEL N, et al. Enhanced production of monomeric interferon-β by CHO cells through the control of culture conditions [J]. Biotechnology Progress, 2008, 21(1): 22−30. doi: 10.1021/bp049807b
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1910
  • HTML全文浏览量:  1010
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-07-07
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回