Principal Component Analysis and Comprehensive Evaluation on Drought Resistance-related Traits of Rice for Cultivation in Cold Regions
-
摘要:
目的 建立寒地水稻移栽至成熟期抗旱综合评价指标体系,筛选抗旱水稻种质资源。 方法 以穗重、穗粒数、结实率等13个性状为指标,采用主成分分析法及聚类分析等方法对30个寒地水稻种质资源(样本)进行抗旱性综合评价。用25个样本以抗旱力特征指标值为输入,对应抗旱综合评价值为输出,利用误差反向传播(Error Back Propagation,BP)神经网络算法构建学习模型;其余5个样本为验证样本,评价学习模型的预测准确性。变换3组学习样本构建3个学习模型,对比3个模型的预测准确性,验证建模方法的合理性与稳定性。 结果 利用主成分分析将干旱胁迫下13个单项指标转化为5个相互独立的综合指标,累积贡献率达83.761%。依据参试材料抗旱综合评价值进行聚类分析,将30个参试样本划分为强抗旱型、抗旱型、中间抗旱型、旱敏感型4类。第1类强抗旱型的有1个(农丰3055),第2类抗旱型的有12个,第3类中间抗旱型的有6个,第4类旱敏感型的有11个。基于水稻性状指标与抗旱综合评价值相关性分析结果,筛选出穗重、穗粒数、结实率、产量、生物产量和经济系数6项指标作为水稻抗旱适宜性评价的特征指标。以特征指标值为输入层,综合评价值为输出层,建立BP神经网络学习模型,可实现水稻抗旱指标适宜性的定量预测。该方法建立的学习模型有较高的预测准确性与稳定性,变换学习样本得到的3个学习模型的预测值与实际值相对误差均不超过10%,实际值与模型预测值线性拟合后决定系数R2均大于0.9。 结论 构建的BP神经网络学习模型,可以实现水稻抗旱指标适宜性的定量预测,且具有较高的预测准确性与稳定性,可比单一的回归分析更准确地预测水稻抗旱适宜性评价的特征指标;穗重、穗粒数、结实率、产量、生物产量和经济系数可作为水稻农业抗旱能力鉴定的综合指标;参试的30个寒地水稻样本中,农丰3055为强抗旱种质资源。 Abstract:Objective A comprehensive indexing system to evaluate drought resistance of rice to be transplanted to maturity in cold regions was established and tested for screening suitable germplasms for the farming. Method Including panicle weight, grains per panicle, seed setting rate, and others, 13 traits were selected as indicators for the principal component and cluster analyses to study the drought resistance of 30 cold-region rice germplasms. Using the indicators from 25 of the specimens as input and the corresponding evaluation criteria as output, a learning model was formulated by the backward propagation (BP) of errors neural network algorithm. The remaining 5 germplasm specimens were reserved for validating the model on prediction accuracy. Subsequently, 3 transformed learning models were generated to compare their predictabilities and verify their suitability and stability for the application. Result The principal component analysis organized the 13 drought resistance indicators into 5 comprehensive indices with a cumulative contribution rate of 83.761%. Based on the results of the evaluation criteria on the 30 specimens, a cluster analysis divided the germplasms into the strongly drought resistant (SDR), drought resistant (DR), intermediately drought resistant (IDR), and drought sensitive (DS) types. Accordingly, Nongfeng 3055 was classified to be the SDR type, 12 germplasms the DR type, 6 germplasms the IDR type, and 11 germplasms DS. The correlation analysis indicated 6 indices, including panicle weight, grains per panicle, seed setting rate, grain yield, biomass, and economic coefficient, closely associated with the drought resistance indicators for the suitability evaluation on rice. Thus, taking these indicators for input and the evaluation criteria for output, BP neural network models were established for the quantitative prediction. The 3 transformed models exhibited high prediction accuracy and stability, along with a relative error between the predicted and actual values below 10%. Furthermore, the linearity coefficients, R2, of the models were all greater than 0.9. Conclusion The BP neural network models could satisfactorily render quantitative prediction with high accuracy and stability on drought resistance of rice for cultivation on locations. Using weight, grains per panicle, seed setting rate, grain yield, biomass, and economic coefficient as the resistance indicators, the models performed superior to the single regression analysis. They determined, among the 30 rice varieties investigated, Nongfeng 3055 to be a highly drought-resistant germplasm most suitable for cultivation in regions of cold climate. -
表 1 参试材料名称及来源
Table 1. Names and origins of specimens
代号
Code名称
Name代号
Code名称
NameH01 农丰8号 Nongfeng 8hao H16 农丰3027 Nongfeng3027 H02 农丰1704 Nongfeng1704 H17 农丰3035 Nongfeng3035 H03 农丰1705 Nongfeng1705 H18 农丰3056 Nongfeng3056 H04 农丰3085 Nongfeng3085 H19 农丰3062 Nongfeng3062 H05 农丰3068 Nongfeng3068 H20 农丰3081 Nongfeng3081 H06 农丰3055 Nongfeng3055 H21 农丰3084 Nongfeng3084 H07 稻坚强 Dao Jiangqiang H22 农丰3156 Nongfeng3156 H08 DPB120 H23 农丰3161 Nongfeng3161 H09 DPB70 H24 农丰3162 Nongfeng3162 H10 DPB15 H25 农丰3163 Nongfeng3163 H11 绥粳21 Suijing 21 H26 农丰3169 Nongfeng3169 H12 农丰3007 Nongfeng3007 H27 农丰3186 Nongfeng3186 H13 农丰3021 Nongfeng3021 H28 农丰3210 Nongfeng3210 H14 农丰3022 Nongfeng3022 H29 农丰3221 Nongfeng3221 H15 农丰3023 Nongfeng3023 H30 农丰3226 Nongfeng3226 表 2 参试材料抗旱系数的描述性分析
Table 2. Descriptive analysis on drought resistant coefficients of specimens
指标
Index平均值
Average标准差
SD变异系数
CV/%分布区间
RangeNP 0.846 0.098 11.54 0.620~0.992 GP 0.814 0.096 11.78 0.669~0.997 SSR/% 0.733 0.133 11.25 0.401~0.931 KGW/g 0.894 0.050 5.54 0.714~0.970 Y/(kg·hm−2) 0.475 0.118 24.83 0.214~0.868 Bio/g 0.648 0.063 9.74 0.527~0.748 PW/g 0.607 0.104 17.10 0.375~0.818 TE/m 0.817 0.037 4.56 0.746~0.886 MNT/个 0.806 0.109 13.52 0.625~1.000 LAH/cm2 0.741 0.102 13.76 0.562~0.990 LWH/g 0.758 0.107 14.06 0.565~0.990 MWH/g 0.585 0.072 12.32 0.452~0.744 EC 0.786 0.091 11.61 0.543~0.994 注:NP:每平方米穗数;GP:穗粒数;SSR:结实率;KGW:千粒重;Y:产量;Bio:每穴生物产量;PW:穗重;TE:拔节期株高;MNT:每穗最高分蘖数;LAH:齐穗期叶面积;LWH:齐穗期叶重;MWH:齐穗期每穴干物重;EC:经济系数。( 表3-4及图2同 )
Note: NP: Number of panicles; GP: Grains per panicle; SSR: Seed setting rate; KGW: 1000-grain weight; Y: Yield; Bio: Biomass; PW: Panicle weight; TE: Tiller number at elongation stage; MNT: Maximum number of tillers; LAH: Leaf area at full heading stage; LWH: Leaf weight at full heading stage; MWH: Dry matter weight at full heading stage; EC: Economic coefficient. Same for Table 3-Table 4, Fig. 2.表 3 参试材料13个性状抗旱系数的相关分析
Table 3. Correlation among 13 drought resistance indicators on specimens
指标 Index D PW NP GP SSR KGW/g Y Bio EC TE MNT MWH LWH LAH D 1 PW 0.88** 1 NP −0.17 −0.43* 1 GP 0.68** 0.57** −0.38* 1 SSR 0.79** 0.74** −0.13 0.25 1 KGW −0.08 −0.07 0.01 −0.52** 0.19 1 Y 0.77** 0.48** 0.3 0.36* 0.78** 0.17 1 Bio 0.51** 0.32 0.49** 0.11 0.25 0.03 0.49** 1 EC 0.66** 0.69** 0.07 0.26 0.74** −0.07 0.64** 0.18 1 TE 0.3 0.3 −0.45* 0.43* 0.05 −0.13 −0.02 −0.04 −0.05 1 MNT −0.16 −0.42* 0.35 −0.04 −0.3 −0.11 0.01 0.2 −0.32 −0.33 1 MWH −0.22 −0.12 −0.35 −0.04 −0.40* −0.12 −0.51** −0.25 −0.26 0.16 0.14 1 LWH 0 −0.09 −0.09 0.16 −0.37* −0.22 −0.29 0.06 −0.28 0.07 0.32 0.51** 1 LAH −0.12 −0.17 −0.22 0.16 −0.47** −0.22 −0.42* −0.02 −0.48** 0.08 0.38* 0.69** 0.73** 1 注:*和**分别表示在5%和1%水平差异显著;NS:不显著。
Note: * and ** indicate significant differences at 5% and 1% level, respectively; NS: No significant difference.表 4 前5个主成分特征向量、主成分特征值、贡献率及累计贡献率
Table 4. Power vector (PV), eigenvalues (E), contribution rate (CR), and cumulative contribution rate (CCR) of top 5 principal components
指标
Index结实率因子
SSRV PV1穗数因子
NPV PV2生物量因子
BioV PV3千粒重因子
KGWV PV4株高因子
TV PV5PW 0.346 0.360 0.066 0.197 −0.077 NP 0.030 −0.466 0.340 −0.153 0.065 GP 0.145 0.442 0.259 −0.311 0.071 SSR 0.432 0.082 0.014 0.242 −0.148 KGW 0.067 −0.248 −0.260 0.700 0.250 Y 0.400 −0.060 0.281 0.107 0.066 Bio 0.169 −0.102 0.495 0.199 0.405 EC 0.393 0.077 0.067 0.030 −0.461 TE 0.032 0.393 −0.126 −0.081 0.664 MNT −0.197 −0.172 0.460 0.009 −0.084 MWH −0.307 0.269 0.005 0.334 −0.256 LWH −0.271 0.222 0.338 0.245 −0.071 LAH −0.342 0.251 0.274 0.248 −0.036 E 4.213 2.726 1.953 1.112 0.885 CR/% 32.404 20.972 15.024 8.553 6.808 CCR/% 32.404 53.376 68.400 76.953 83.760 表 5 30个参试材料的D值及抗旱性排序
Table 5. D values and drought resistance ranking on 30 specimens
代号
CodeD 排位
Rank代号
CodeD 排位
RankH01 0.4792 21 H16 0.6120 08 H02 0.4677 22 H17 0.6138 07 H03 0.5363 15 H18 0.6082 09 H04 0.6319 05 H19 0.5992 10 H05 0.6320 04 H20 0.5365 14 H06 0.7677 01 H21 0.5989 11 H07 0.1867 30 H22 0.3345 28 H08 0.6846 02 H23 0.6603 03 H09 0.4248 24 H24 0.4800 20 H10 0.2106 29 H25 0.5774 13 H11 0.3759 27 H26 0.5847 12 H12 0.4957 19 H27 0.5324 16 H13 0.5080 18 H28 0.5312 17 H14 0.4422 23 H29 0.3837 26 H15 0.3942 25 H30 0.6280 06 表 6 基于BP神经网络算法的水稻抗旱指标适宜性预测结果
Table 6. Prediction by BP neural network algorithm on drought resistance indicators of rice for cultivation suitability
学习模型
Learning
model验证样本
Validation
sample实际得分
Actual
score预测得分
Predicted
score相对误差
Relative
error /%1 农丰3035 Nongfeng3035 0.6138 0.6142 0.07 农丰3163 Nongfeng3163 0.5774 0.5799 0.43 农丰3007 Nongfeng3007 0.4957 0.5421 9.36 DPB120 0.6846 0.6520 −4.76 农丰3226 Nongfeng3226 0.6280 0.6068 −3.38 2 农丰3021 Nongfeng3021 0.5080 0.5547 9.19 农丰3186 Nongfeng3186 0.5324 0.5436 2.10 农丰3023 Nongfeng3023 0.3942 0.3817 −3.17 农丰1705 Nongfeng1705 0.5363 0.5347 −0.30 DPB70 0.4248 0.4478 5.41 3 农丰3062 Nongfeng3062 0.5992 0.6063 1.18 农丰1704 Nongfeng1704 0.4677 0.4863 3.98 农丰3210 Nongfeng3210 0.5312 0.5164 −2.79 农丰3055 Nongfeng3055 0.7677 0.6967 −9.25 农丰3023 Nongfeng3023 0.3942 0.3799 −3.63 -
[1] 李艳, 马均, 王贺正, 等. 水稻品种苗期抗旱性鉴定指标筛选及其综合评价 [J]. 西南农业学报, 2005, 18(3):250−255. doi: 10.3969/j.issn.1001-4829.2005.03.005LI Y, MA J, WANG H Z, et al. Studies on screening of the drought resistance assessment indexes and comprehensive evaluation of rice varieties during seedling stage [J]. Southwest China Journal of Agricultural Sciences, 2005, 18(3): 250−255.(in Chinese) doi: 10.3969/j.issn.1001-4829.2005.03.005 [2] 高焕晔, 王三根, 宗学凤, 等. 灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响 [J]. 中国生态农业学报, 2012, 20(1):40−47. doi: 10.3724/SP.J.1011.2012.00040GAO H Y, WANG S G, ZONG X F, et al. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage [J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 40−47.(in Chinese) doi: 10.3724/SP.J.1011.2012.00040 [3] 王成瑷, 赵磊, 王伯伦, 等. 干旱胁迫对水稻生育性状与生理指标的影响 [J]. 农学学报, 2014, 4(1):4−14. doi: 10.3969/j.issn.1007-7774.2014.01.002WANG C A, ZHAO L, WANG B L, et al. Effect of water stress of soil on growing characteristics and physiological index of rice (Oryza sativa) [J]. Journal of Agriculture, 2014, 4(1): 4−14.(in Chinese) doi: 10.3969/j.issn.1007-7774.2014.01.002 [4] 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理 [J]. 生态学报, 2013, 33(18):5477−5483. doi: 10.5846/stxb201304270839DONG L, LI J Y. Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality [J]. Acta Ecologica Sinica, 2013, 33(18): 5477−5483.(in Chinese) doi: 10.5846/stxb201304270839 [5] 杨瑰丽, 杨美娜, 李帅良, 等. 水稻萌芽期抗旱指标筛选与抗旱性综合评价 [J]. 华南农业大学学报, 2015, 36(2):1−5.YANG G L, YANG M N, LI S L, et al. Screening and comprehensive evaluation of drought resistance indices of rice at germination stage [J]. Journal of South China Agricultural University, 2015, 36(2): 1−5.(in Chinese) [6] GOSWAMI A, BANERJEE R, RAHA S. Drought resistance in rice seedlings conferred by seed priming [J]. Protoplasma, 2013, 250(5): 1115−1129. doi: 10.1007/s00709-013-0487-x [7] 周少川, 李宏, 卢德城, 等. 水稻抗旱育种材料的筛选与研究 [J]. 分子植物育种, 2010, 8(6):1202−1207. doi: 10.3969/mpb.008.001202ZHOU S C, LI H, LU D C, et al. The exploration and screening of rice breeding materials resistant to drought [J]. Molecular Plant Breeding, 2010, 8(6): 1202−1207.(in Chinese) doi: 10.3969/mpb.008.001202 [8] 张鸿, 朱从桦, 谭杰, 等. 杂交籼稻新组合抗旱性鉴定评价及预测研究 [J]. 干旱地区农业研究, 2018, 36(2):161−169. doi: 10.7606/j.issn.1000-7601.2018.02.24ZHANG H, ZHU C H, TAN J, et al. Study of identification, evaluation and prediction on the drought resistance of new indicia hybrid rice combinations [J]. Agricultural Research in the Arid Areas, 2018, 36(2): 161−169.(in Chinese) doi: 10.7606/j.issn.1000-7601.2018.02.24 [9] 敬礼恒, 陈光辉, 刘利成, 等. 水稻种子萌发期的抗旱性鉴定指标研究 [J]. 杂交水稻, 2014, 29(3):65−69.JING L H, CHEN G H, LIU L C, et al. Studies on identification indices of drought resistance of rice in seed germination [J]. Hybrid Rice, 2014, 29(3): 65−69.(in Chinese) [10] 钟娟, 傅志强. 不同晚稻品种抗旱性相关指标研究 [J]. 作物研究, 2015, 29(6):575−580, 602. doi: 10.3969/j.issn.1001-5280.2015.06.01ZHONG J, FU Z Q. Drought resistance indexes of different late rice varieties [J]. Crop Research, 2015, 29(6): 575−580, 602.(in Chinese) doi: 10.3969/j.issn.1001-5280.2015.06.01 [11] 张军, 崔潇, 赵章囡, 等. 7份喀麦隆水稻种质资源萌发期抗旱性综合鉴定 [J]. 陕西农业科学, 2019, 65(4):32−34. doi: 10.3969/j.issn.0488-5368.2019.04.012ZHANG J, CUI X, ZHAO Z A, et al. Comprehensive Identification of Drought Resistance in Seven Cameroon Rice Germplasm Resources at Stage of Germination [J]. Shaanxi Journal of Agricultural Sciences, 2019, 65(4): 32−34.(in Chinese) doi: 10.3969/j.issn.0488-5368.2019.04.012 [12] 王贺正, 李艳, 马均, 等. 水稻苗期抗旱性指标的筛选 [J]. 作物学报, 2007, 33(9):1523−1529. doi: 10.3321/j.issn:0496-3490.2007.09.020WANG H Z, LI Y, MA J, et al. Screening indexes of drought resistance during seedling stage in rice [J]. Acta Agronomica Sinica, 2007, 33(9): 1523−1529.(in Chinese) doi: 10.3321/j.issn:0496-3490.2007.09.020 [13] 刘云开, 方宝华, 庞冰, 等. 水稻品种节水抗旱适应性筛选研究 [J]. 湖南农业科学, 2009(5):24−26, 30. doi: 10.3969/j.issn.1006-060X.2009.05.009LIU Y K, FANG B H, PANG B, et al. Screening of rice varieties for adaptability to water saving and drought resistance [J]. Hunan Agricultural Sciences, 2009(5): 24−26, 30.(in Chinese) doi: 10.3969/j.issn.1006-060X.2009.05.009 [14] 刘三雄, 黎用朝, 吴俊, 等. 应用隶属函数法综合评价水稻主栽品种抗旱性的研究 [J]. 杂交水稻, 2015, 30(1):74−78.LIU S X, LI Y C, WU J, et al. Evaluation of drought tolerance of widely-used rice varieties with subordinate function [J]. Hybrid Rice, 2015, 30(1): 74−78.(in Chinese) [15] 徐建欣, 杨洁, 胡祥伟, 等. 云南陆稻芽期抗旱性鉴定指标筛选及其综合评价 [J]. 西南农业学报, 2015, 28(4):1455−1464.XU J X, YANG J, HU X W, et al. Screening of drought resistance identification indexes and comprehensive evaluation of Yunnan upland rice varieties during germinating stage [J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1455−1464.(in Chinese) [16] ZHANG F T, CUI F L, ZHANG L X, et al. Development and identification of a introgression line with strong drought resistance at seedling stage derived from Oryza sativa L. mating with Oryza rufi pogon Griff [J]. Euphytica, 2014, 200(1): 1−7. doi: 10.1007/s10681-014-1121-5 [17] 王英, 张浩, 马军韬, 等. 水稻抗旱研究进展与展望 [J]. 热带作物学报, 2018, 39(5):1038−1043. doi: 10.3969/j.issn.1000-2561.2018.05.031WANG Y, ZHANG H, MA J T, et al. Advances in drought tolerance of rice [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 1038−1043.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.05.031 [18] 张灿军, 姚宇卿, 王育红, 等. 旱稻抗旱性鉴定方法与指标研究——Ⅰ鉴定方法与评价指标 [J]. 干旱地区农业研究, 2005, 23(3):33−36. doi: 10.3321/j.issn:1000-7601.2005.03.007ZHANG C J, YAO Y Q, WANG Y H, et al. Study on resistance drought identify method and evaluation index of dry-land rice——Ⅰ Identify method and evaluation index [J]. Agricultural Research in the Arid Areas, 2005, 23(3): 33−36.(in Chinese) doi: 10.3321/j.issn:1000-7601.2005.03.007 [19] 张安宁, 王飞名, 余新桥, 等. 基于土壤水分梯度鉴定法的栽培稻抗旱标识品种筛选 [J]. 作物学报, 2008, 34(11):2026−2032.ZHANG A N, WANG F M, YU X Q, et al. Screening marker varieties with drought resistance in cultivated rice (Oryza sativa L.)/ using identification method with soil moisture gradient [J]. Acta Agronomica Sinica, 2008, 34(11): 2026−2032.(in Chinese) [20] LEE H, CHA J, CHOI C, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance [J]. Rice, 2018, 11(1): 1−12. doi: 10.1186/s12284-017-0196-8 [21] 王贺正, 马均, 李旭毅. 水稻开花期抗旱性鉴定指标的筛选 [J]. 作物学报, 2005, 31(11):1485−1489. doi: 10.3321/j.issn:0496-3490.2005.11.016WANG H Z, MA J, LI X Y. Screening Identification Indexes of Drought Resistance at Flowering Stage in Rice [J]. Acta Agronomica Sinica, 2005, 31(11): 1485−1489.(in Chinese) doi: 10.3321/j.issn:0496-3490.2005.11.016 [22] 胡标林, 余守武, 万勇, 等. 东乡普通野生稻全生育期抗旱性鉴定 [J]. 作物学报, 2007, 33(3):425−432. doi: 10.3321/j.issn:0496-3490.2007.03.012HU B L, YU S W, WAN Y, et al. Drought-resistance identification of Dongxiang common wild rice (Oryza rufipogon griff.)/ in whole growth period [J]. Acta Agronomica Sinica, 2007, 33(3): 425−432.(in Chinese) doi: 10.3321/j.issn:0496-3490.2007.03.012 [23] 周国雁, 伍少云, 隆文杰, 等. 云南省不同小麦资源种子萌发期抗旱性相关性状差异及与抗旱指数、抗旱系数的相关性 [J]. 华南农业大学学报, 2015, 36(2):13−18. doi: 10.7671/j.issn.1001-411X.2015.02.003ZHOU G Y, WU S Y, LONG W J, et al. Drought resistant characters during germination of different wheat germplasm in Yunnan Province and their correlations with the index and coefficient of drought resistance [J]. Journal of South China Agricultural University, 2015, 36(2): 13−18.(in Chinese) doi: 10.7671/j.issn.1001-411X.2015.02.003 [24] 栗雨勤, 张文英, 王有增, 等. 作物抗旱性鉴定指标研究及进展 [J]. 河北农业科学, 2004, 8(1):58−61. doi: 10.3969/j.issn.1088-1631.2004.01.015LI Y Q, ZHANG W Y, WANG Y Z, et al. Advances of studies on crop drought resistance identification [J]. Journal of Hebei Agricultural Sciences, 2004, 8(1): 58−61.(in Chinese) doi: 10.3969/j.issn.1088-1631.2004.01.015 [25] 王英. 利用回交导入系筛选水稻高产、抗旱和耐盐株系及选择导入系相关性状的QTL定位[D]. 北京: 中国农业科学院, 2013.WANG Y. Screening of High Yield, Drought and Salt Tolerant Plants from Backcross Introgression Lines and QTL Detectionfor Related Tranits in Rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) [26] 田又升, 谢宗铭, 王志军, 等. 水稻种子芽期抗旱性与产量抗旱系数关系分析 [J]. 作物杂志, 2014(5):148−153.TIAN Y S, XIE Z M, WANG Z J, et al. Relationship between the drought resistance of rice shoots and drought resistance coefficient of yield [J]. Crops, 2014(5): 148−153.(in Chinese) [27] 安永平, 强爱玲, 张媛媛, 等. 渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究 [J]. 植物遗传资源学报, 2006, 7(4):421−426. doi: 10.3969/j.issn.1672-1810.2006.04.009AN Y P, QIANG A L, ZHANG Y Y, et al. Study on characteristics of germination and drought-resistance index by osmotic stress in rice [J]. Journal of Plant Genetic Resources, 2006, 7(4): 421−426.(in Chinese) doi: 10.3969/j.issn.1672-1810.2006.04.009 [28] 王贺正, 马均, 李旭毅, 等. 水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究 [J]. 西南农业学报, 2004, 17(5):594−599. doi: 10.3969/j.issn.1001-4829.2004.05.011WANG H Z, MA J, LI X Y, et al. Study on drought resistance and screening of the drought resistance assessment indexes at germinating stage of rice [J]. Southwest China Journal of Agricultural Sciences, 2004, 17(5): 594−599.(in Chinese) doi: 10.3969/j.issn.1001-4829.2004.05.011 [29] 王贺正. 水稻抗旱性研究及其鉴定指标的筛选[D]. 雅安: 四川农业大学, 2007.WANG H Z. Study on Drought Resistance and Screening Identification Indexes of Drought Resistance in Rice[D]. Yaan: Sichuan Agricultural University, 2007. (in Chinese) [30] 左付山, 李政原, 吕晓, 等. 基于BP神经网络的汽油机尾气排放预测 [J]. 江苏大学学报(自然科学版), 2020, 41(3):307−313.ZUO F S, LI Z Y, LYU X, et al. Prediction of gasoline engine exhaust emission based on BP neural network [J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(3): 307−313.(in Chinese) [31] 梁春华. 人工神经网络在数据挖掘中的应用研究 [J]. 无线互联科技, 2019(22):17−18. doi: 10.3969/j.issn.1672-6944.2019.22.009LIANG C H. Research on the application of artificial neural network in data mining [J]. Wireless Internet Technology, 2019(22): 17−18.(in Chinese) doi: 10.3969/j.issn.1672-6944.2019.22.009