Antioxidant Activity of Polysaccharides in Wuyi Mingcong Tea Germplasms
-
摘要:
目的 探明武夷山茶区特色武夷名丛茶树种质资源茶多糖的组成特征和抗氧化活性,为武夷名丛茶树种质资源的开发利用和乌龙茶新品种选育提供科学依据。 方法 以31份武夷名丛茶树种质资源为试材,相同方法提取茶多糖,测定茶多糖基本组分和体外抗氧化活性,采用聚类热图分析和隶属函数法进行分类和综合评价。 结果 31份武夷名丛茶树种质资源茶多糖的提取率为1.73%~3.39%;茶多糖组分中,中性糖含量为25.75%~67.21%,糖醛酸含量为11.10%~22.57%,蛋白质含量为2.24%~7.42%,茶多酚含量为3.81%~9.68%;茶多糖对DPPH自由基清除率为25.47%~84.30%,平均值为55.61%,对羟基自由基的清除率为34.98%~78.38%,平均值为54.20%;茶多糖基本组成和自由基清除率7个指标的变异系数在16.74%~23.71%,遗传多样性指数在1.93~2.18。聚类热图分析表明,糖醛酸、蛋白质和茶多酚含量与DPPH·和·OH自由基清除率相关性较强,而提取率和中性糖含量与DPPH·和·OH自由基清除率相关性较弱;31份武夷名丛茶树种质资源可分为3类。经隶属函数法综合评价,平均隶属函数值排名前5位的武夷名丛种质为九龙兰、玉蟾、玉笪、白鸡冠和红鸡冠。 结论 31份武夷名丛茶树种质资源茶多糖基本组分和体外抗氧化活性存在较大的差异性和多样性,茶多糖组分中糖醛酸、蛋白质和茶多酚对其抗氧化活性贡献较大,九龙兰、玉蟾、玉笪、白鸡冠和红鸡冠 5份武夷名丛茶多糖抗氧化活性较强,可作为武夷岩茶保健育种的亲本材料。 Abstract:Objective Composition and antioxidant activity of polysaccharides (TPS) in Wuyi Mingcong tea germplasms from plantations at Mt. Wuyi were determined for better utilization of the existing resource and new variety breeding. Method Samples of 31 Wuyi Mingcong tea germplasms were collected for polysaccharides extraction. The extraction rate and contents of neutral sugar, uronic acid, protein and tea polyphenol were determined. Methods of D-deoxyribose-iron system and DPPH assay were adopted to evaluate the scavenging activities on DPPH· and hydroxyl (·OH) free radicals. A clustered heatmap and subordinate function method were employed to characterize and classify the various TPS. Result The TPS extraction rates on the tea germplasm samples ranged from 1.73% to 3.39%. The extracts contained 25.75-67.21% neutral sugars, 11.10-22.57% uronic acid, 2.24-7.42% protein, 3.81-9.68% polyphenols. The average scavenging activity of TPS on DPPH· was 55.61%, ranging from 25.47% to 84.30%, and that on ·OH 54.20%, ranging from 34.98% to 78.38%. The coefficients of variation on 7 TPS traits ranged from 16.74% to 23.71% and on genetic diversity indices from 1.93 to 2.18. The hierarchical cluster and heatmap analyses showed that the contents of uronic acid, protein, and polyphenols significantly correlated with the free radical scavenging activities of the TPS extracts, but not between the extraction rate or neutral sugar and the antioxidant activity. The 31 germplasms could be divided into 3 classes. The top 5 germplasms on the average subordinate function value were Camellia sinensis (L.) O. Kuntze cv. Jiulonglan, cv. Yuchan, cv. Yudan, cv. Baijiguan, and cv. Hongjiguan. Conclusion The composition and antioxidant activity of TPS in the 31 Wuyi Mingcong teas varied significantly. The uronic acid, protein, and polyphenols in TPS exerted significant effect on its antioxidant activity. TPS in Jiulonglan, Yuchan, Yudan, Baijiguan, and Hongjiguan appeared to be higher on antioxidant activity among the germplasms. These 5 varieties could be applied for breeding new varieties to make oolong teas for the health food market. -
图 4 31份武夷名丛种质资源基于茶多糖基本组成和抗氧化活性的聚类热图
注:ER:提取率;NS:中性糖;UA:糖醛酸;PRO:蛋白质;TP:茶多酚;DPPH· -SR:DPPH·自由基清除率;·OH-SR:·OH自由基清除率。
Figure 4. Clustered heatmap of 31 Wuyi Mingcong tea germplasms based on composition and antioxidant activity of TPS
Note: ER: Extraction rate; NS: Neutral sugar; UA: Uronic acid; PRO: Protein; TP: Tea polyphenol; DPPH· -SR: DPPH· scavenging rate; ·OH-SR: ·OH scavenging rate.
表 1 供试材料基本信息
Table 1. Basic information on tested materials
种质编号
Germplasm number种质
Germplasm来源地
Origin种质编号
Germplasm number种质
Germplasm来源地
OriginMC01 白鸡冠 Camellia sinensis (L.)
O. Kuntze cv. Baijiguan外鬼洞 Waiguidong MC17 红孩儿 Camellia sinensis (L.)
O. Kuntze cv. Honghaier内鬼洞 Neiguidong MC02 白牡丹 Camellia sinensis (L.)
O. Kuntze cv. Baimudan马头岩水洞口 Matouyanshuidongkou MC18 肉桂 Camellia sinensis (L.)
O. Kuntze cv. Rougui马枕峰 Mazhenfeng MC03 半天妖 Camellia sinensis (L.)
O. Kuntze cv. Bantianyao三花峰 Sanhuafeng MC19 铁罗汉 Camellia sinensis (L.)
O. Kuntze cv. Tieluohan内鬼洞 Neiguidong MC04 玉笪 Camellia sinensis (L.)
O. Kuntze cv. Yudan北斗峰 Beidoufeng MC20 小红梅 Camellia sinensis (L.)
O. Kuntze cv. Xiaohongmei九龙窠 Jiulongke MC05 岭上梅 Camellia sinensis (L.)
O. Kuntze cv. Lingshangmei状元岭 Zhuangyuanling MC21 正太阴 Camellia sinensis (L.)
O. Kuntze cv. Zhengtaiyin外鬼洞 Waiguidong MC06 灵芽 Camellia sinensis (L.)
O. Kuntze cv. Lingya刘官寨 Liuguanzhai MC22 大红袍 Camellia sinensis (L.)
O. Kuntze cv. Dahongpao九龙窠 Jiulongke MC07 玉蟾 Camellia sinensis (L.)
O. Kuntze cv. Yuchan刘官寨 Liuguanzhai MC23 玉井流香 Camellia sinensis (L.)
O. Kuntze cv. Yujinliuxiang内鬼洞 Neiguidong MC08 九龙兰 Camellia sinensis (L.)
O. Kuntze cv. Jiulonglan外九龙窠 Waijiulongke MC24 水金龟 Camellia sinensis (L.)
O. Kuntze cv. Shuijingui牛栏坑杜葛寨 Niulankengdugezhai MC09 月桂 Camellia sinensis (L.)
O. Kuntze cv. Yuegui霞宾岩下溪仔边 Xiabingyanxiaxizaibian MC25 九龙奇 Camellia sinensis (L.)
O. Kuntze cv. Jiulongqi十八寨 Shibazhai MC10 向天梅 Camellia sinensis (L.)
O. Kuntze cv. Xiangtianmei北斗峰 Beidoufeng MC26 岭下兰 Camellia sinensis (L.)
O. Kuntze cv. Lingxialan慧苑狗洞 Huiyuangoudong MC11 金丁香 Camellia sinensis (L.)
O. Kuntze cv. Jindingxiang野猪槽 Yezhucao MC27 大红梅 Camellia sinensis (L.)
O. Kuntze cv. Dahongmei十八寨 Shibazhai MC12 醉贵姬 Camellia sinensis (L.)
O. Kuntze cv. Zuiguiji内鬼洞 Neiguidong MC28 九龙珠 Camellia sinensis (L.)
O. Kuntze cv. Jiulongzhu九龙窠 Jiulongzhai MC13 金鸡母 Camellia sinensis (L.)
O. Kuntze cv. Jinjimu九龙窠 Jiulongke MC29 正太阳 Camellia sinensis (L.)
O. Kuntze cv. Zhengtaiyang外鬼洞 Waiguidong MC14 香石角 Camellia sinensis (L.)
O. Kuntze cv. Xiangshijiao水濂洞 Shuiliandong MC30 醉墨 Camellia sinensis (L.)
O. Kuntze cv. Zuimo九龙窠 Jiulongke MC15 红鸡冠 Camellia sinensis (L.)
O. Kuntze cv. Hongjiguan内鬼洞 Neiguidong MC31 正白毫 Camellia sinensis (L.)
O. Kuntze cv. Zhengbaihao岚谷乡岭阳村 Languxianglingyangcun MC16 红海棠 Camellia sinensis (L.)
O. Kuntze cv. Honghaitang内鬼洞 Neiguidong 表 2 31份武夷名丛茶树种质资源茶多糖抗氧化活性的隶属函数分析
Table 2. Subordinate function analysis on antioxidant activity of TPS extracted from 31 Wuyi Mingcong tea germplasms
种质编号
Germplasm number提取率
Extraction rate中性糖
Neutral sugar糖醛酸
Uronic acid蛋白质
Protein茶多酚
Tea polyphenolDPPH·清除率
DPPH· scavenging rate·OH清除率
·OH scavengingrate平均隶属函数值
Mean subordinatefunction value位次
RankingMC01 0.55 0.96 0.76 1.00 0.68 0.80 0.45 0.74 4 MC02 0.73 0.45 0.58 0.61 0.71 0.70 0.76 0.65 8 MC03 0.81 0.73 0.18 0.84 0.83 0.50 0.72 0.66 7 MC04 0.65 0.80 0.43 1.00 0.87 0.48 1.00 0.75 3 MC05 0.71 0.67 0.64 0.62 0.72 0.56 0.25 0.60 13 MC06 0.77 0.49 0.81 0.49 0.23 0.28 0.13 0.46 25 MC07 0.80 0.80 0.72 0.84 0.70 1.00 0.56 0.77 2 MC08 0.78 0.85 0.67 0.89 0.94 0.78 0.62 0.79 1 MC09 0.47 0.80 0.38 0.73 0.45 0.24 0.45 0.50 21 MC10 0.52 0.12 0.00 0.75 0.90 0.39 0.04 0.39 28 MC11 0.95 0.51 0.22 0.60 1.00 0.47 0.22 0.57 17 MC12 0.79 0.66 0.53 0.48 0.66 0.65 0.45 0.60 11 MC13 0.60 0.68 0.21 0.33 0.52 0.28 0.00 0.37 29 MC14 1.00 0.56 0.43 0.80 0.83 0.71 0.40 0.67 6 MC15 0.38 1.00 0.53 0.44 0.82 0.92 0.73 0.69 5 MC16 0.37 0.33 0.58 0.57 0.76 0.58 0.28 0.49 22 MC17 0.51 0.23 0.41 0.51 0.60 0.33 0.14 0.39 27 MC18 0.71 0.73 0.46 0.68 0.95 0.69 0.31 0.65 10 MC19 0.02 0.50 0.61 0.65 0.22 0.50 0.74 0.46 24 MC20 0.94 0.49 0.61 0.55 0.55 0.40 0.25 0.54 19 MC21 0.04 0.56 0.38 0.62 0.66 0.47 0.03 0.40 26 MC22 0.80 0.77 0.36 0.73 0.27 0.28 0.76 0.57 16 MC23 0.80 0.43 0.73 0.48 0.47 0.49 0.26 0.52 20 MC24 0.19 0.72 0.85 0.63 0.52 0.56 0.75 0.60 12 MC25 0.42 0.53 0.59 0.83 0.61 0.70 0.43 0.59 14 MC26 0.39 0.78 1.00 0.69 0.66 0.64 0.38 0.65 9 MC27 0.65 0.41 0.74 0.59 0.48 0.46 0.47 0.54 18 MC28 0.00 0.66 0.67 0.33 0.78 0.57 0.29 0.47 23 MC29 0.30 0.31 0.01 0.52 0.24 0.12 0.55 0.29 30 MC30 0.64 0.75 0.38 0.77 0.41 0.32 0.82 0.58 15 MC31 0.51 0.00 0.08 0.00 0.00 0.00 0.49 0.16 31 -
[1] 刘宝顺, 林慧, 戈佩贞. 武夷茶历史溯源、传播发展与现状 [J]. 福建茶叶, 2014, 36(3):41−44.LIU B S, LIN H, GE P Z. Traceability of history, transmission and present situation of Wuyi rock tea [J]. Tea in Fujian, 2014, 36(3): 41−44.(in Chinese) [2] 罗盛财, 陈德华, 黄贤格, 等. 武夷名丛单丛茶树种质资源收集、整理鉴定与保护利用研究 [J]. 中国茶叶, 2017, 39(12):18−20. doi: 10.3969/j.issn.1000-3150.2017.12.008LUO S C, CHEN D H, HUANG X G, et al. Study on collecting, identifying and protecting of Wuyi Mingcong and dancong tea plant germplasm resources [J]. China Tea, 2017, 39(12): 18−20.(in Chinese) doi: 10.3969/j.issn.1000-3150.2017.12.008 [3] 杨军国, 王丽丽, 陈林. 茶叶多糖的药理活性研究进展 [J]. 食品工业科技, 2018, 39(6):301−307.YANG J G, WANG L L, CHEN L. Research progress on pharmacological activities of polysaccharides prepared from tea [J]. Science and Technology of Food Industry, 2018, 39(6): 301−307.(in Chinese) [4] 袁勇, 尹钟, 谭月萍, 等. 茶多糖的提取分离及生物活性研究进展 [J]. 茶叶通讯, 2018, 45(3):8−12. doi: 10.3969/j.issn.1009-525X.2018.03.002YUAN Y, YIN Z, TAN Y P, et al. Advances in extraction, separation and biological activity of tea polysaccharides [J]. Journal of Tea Communication, 2018, 45(3): 8−12.(in Chinese) doi: 10.3969/j.issn.1009-525X.2018.03.002 [5] 杨军国, 陈泉宾, 王秀萍, 等. 茶多糖组成结构及其降血糖作用研究进展 [J]. 福建农业学报, 2014, 29(12):1260−1264. doi: 10.3969/j.issn.1008-0384.2014.12.021YANG J G, CHEN Q B, WANG X P, et al. Component profile of tea polysaccharides and effect on decreasing blood sugar [J]. Fujian Journal of Agricultural Sciences, 2014, 29(12): 1260−1264.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.12.021 [6] 陈玉琼, 余志, 张芸, 等. 茶树品种、部位和嫩度对茶多糖含量和活性的影响 [J]. 华中农业大学学报, 2005, 24(4):406−409. doi: 10.3321/j.issn:1000-2421.2005.04.021CHEN Y Q, YU Z, ZHANG Y, et al. Effect of tea cultivars and tenderness on tea polysaccharide [J]. Journal of Huazhong Agricultural, 2005, 24(4): 406−409.(in Chinese) doi: 10.3321/j.issn:1000-2421.2005.04.021 [7] 刘孝平, 邹雨珂, 刘路, 等. 不同品种罗望子果肉和种子多糖结构及抗氧化活性比较 [J]. 南方农业学报, 2019, 50(8):1807−1813. doi: 10.3969/j.issn.2095-1191.2019.08.22LIU X P, ZOU Y K, LIU L, et al. Comparison of structure and antioxidant activity of fruit and seed polysaccharides from different varieties of tamarind [J]. Journal of Southern Agriculture, 2019, 50(8): 1807−1813.(in Chinese) doi: 10.3969/j.issn.2095-1191.2019.08.22 [8] 吴小燕, 王仁才, 刘琼. 不同品种枣黄酮及多糖体外抗氧化性评价 [J]. 湖北农业科学, 2017, 56(7):1330−1333, 1355.WU X Y, WANG R C, LIU Q. Evaluation of in vitro antioxidant activity of flavonoids and polysaccharides from different varieties of jujube [J]. Hubei Agricultural Sciences, 2017, 56(7): 1330−1333, 1355.(in Chinese) [9] 王飞权, 冯花, 罗盛财, 等. 武夷名丛茶树种质资源农艺性状多样性分析 [J]. 中国农业科技导报, 2019, 21(6):43−54.WANG F Q, FENG H, LUO S C, et al. Diversity analysis of agronomic traits of Wuyi mingcong tea plant germplasm resources [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 43−54.(in Chinese) [10] 王飞权, 李纪艳, 冯花, 等. 武夷名丛茶树种质资源叶片解剖结构分析 [J]. 热带作物学报, 2019, 40(12):2375−2389.WANG F Q, LI J Y, FENG H, et al. Analysis of leaf anatomical structure of Wuyi mingcong tea germplasm resources [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2375−2389.(in Chinese) [11] 王飞权, 冯花, 王芳, 等. 42份武夷名丛茶树资源生化成分多样性分析 [J]. 植物遗传资源学报, 2015, 16(3):670−676.WANG F Q, FENG H, WANG F, et al. Diversity analysis of biochemical components of 42 Wuyi mingcong tea germplasms [J]. Journal of Plant Genetic Resources, 2015, 16(3): 670−676.(in Chinese) [12] 石玉涛, 郑超, 黄华娟, 等. 武夷名丛茶多糖清除羟基自由基活性研究 [J]. 中国农学通报, 2014, 30(25):184−188. doi: 10.11924/j.issn.1000-6850.2014-1555SHI Y T, ZHENG C, HUANG H J, et al. Study on antioxidant activity of Wuyi Ming Cong tea polysaccharides [J]. Chinese Agricultural Science Bulletin, 2014, 30(25): 184−188.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-1555 [13] 吴灰全, 万瀚仁, 周萌. 武夷山茶叶生产的气候条件分析 [J]. 农业与技术, 2014, 34(12):122. doi: 10.3969/j.issn.1671-962X.2014.12.107WU H Q, WAN H R, ZHOU M. Analysis on the climate condition of tea production in Wuyi mountain [J]. Agriculture and Technology, 2014, 34(12): 122.(in Chinese) doi: 10.3969/j.issn.1671-962X.2014.12.107 [14] 倪德江, 陈玉琼, 谢笔钧, 等. 绿茶、乌龙茶、红茶的茶多糖组成、抗氧化及降血糖作用研究 [J]. 营养学报, 2004, 26(1):57−60. doi: 10.3321/j.issn:0512-7955.2004.01.014NI D J, CHEN Y Q, XIE B J, et al. Studies on composition, antioxidation and hypoglycemic effects of polysaccharides from green tea, Oolong tea and black tea [J]. Acta Nutrimenta Sinica, 2004, 26(1): 57−60.(in Chinese) doi: 10.3321/j.issn:0512-7955.2004.01.014 [15] BLUMENKRANTZ N, ASBOE-HANSEN G. New method for quantitative determination of uronic acids [J]. Analytical Biochemistry, 1973, 54(2): 484−489. doi: 10.1016/0003-2697(73)90377-1 [16] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [17] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric Method for Determination of Sugars and Related Substances [J]. Analytical Chemistry, 1956, 28(3): 350−356. doi: 10.1021/ac60111a017 [18] 中国国家标准化管理委员会. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313-2018[S]. 北京: 中国标准出版社, 2018: 4-5. [19] HALLIWELL B, GUTTERIDGE J M C, ARUOMA O I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals [J]. Analytical Biochemistry, 1987, 165(1): 215−219. doi: 10.1016/0003-2697(87)90222-3 [20] CHEN H X, WANG Z S, QU Z S, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from Oolong tea [J]. European Food Research and Technology, 2009, 229(4): 629−635. doi: 10.1007/s00217-009-1088-y [21] 师赵康, 赵泽群, 张远航, 等. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析 [J]. 作物杂志, 2019(5):28−36.SHI Z K, ZHAO Z Q, ZHANG Y H, et al. The response and cluster analysis of biomass accumulation and root morphology of maize inbred lines seedlings to two nitrogen application levels [J]. Crops, 2019(5): 28−36.(in Chinese) [22] 吕伟, 韩俊梅, 文飞, 等. 不同来源芝麻种质资源的表型多样性分析 [J]. 植物遗传资源学报, 2020, 21(1):234−242, 251.LYU W, HAN J M, WEN F, et al. Phenotypic diversity analysis of sesame germplasm resources [J]. Journal of Plant Genetic Resources, 2020, 21(1): 234−242, 251.(in Chinese) [23] 许泳清, 李华伟, 纪荣昌, 等. 18份彩色马铃薯种质性状鉴定及营养品质评价 [J]. 福建农业学报, 2016, 31(8):797−802.XU Y Q, LI H W, JI R C, et al. The evaluation of Agronomic characteristics and nutritional quality in 18 color potato resources [J]. Fujian Journal of Agricultural Sciences, 2016, 31(8): 797−802.(in Chinese) [24] 闫林, 陈婷, 黄丽芳, 等. 小粒种咖啡种质资源重要农艺性状遗传多样性分析 [J]. 福建农业学报, 2019, 34(12):1379−1387.YAN L, CHEN T, HUANG L F, et al. Genetic diversity on selected agronomic traits of Arabica coffee germplasm [J]. Fujian Journal of Agricultural Sciences, 2019, 34(12): 1379−1387.(in Chinese) [25] 申明月, 聂少平, 谢明勇, 等. 茶叶多糖的糖醛酸含量测定及抗氧化活性研究 [J]. 天然产物研究与开发, 2007, 19(5):830−833. doi: 10.3969/j.issn.1001-6880.2007.05.024SHEN M Y, NIE S P, XIE M Y, et al. Studies on the content of uronic acid in tea polysaccharide and its antioxidative activity [J]. Natural Product Research and Development, 2007, 19(5): 830−833.(in Chinese) doi: 10.3969/j.issn.1001-6880.2007.05.024 [26] 杨新河, 黄明军, 马蔚, 等. 不同黑茶多糖的组成分析及其抗氧化活性 [J]. 食品工业科技, 2017, 38(20):16−20.YANG X H, HUANG M J, MA W, et al. Composition and antioxidant activity of polysaccharides of different dark tea [J]. Science and Technology of Food Industry, 2017, 38(20): 16−20.(in Chinese) [27] 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019: 86-87.AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019: 86-87. (in Chinese) [28] 阚晓月, 余江南, 徐希明. 葛根多糖及其结构与活性关系的研究进展 [J]. 食品工业科技, 2019, 40(20):356−362.KAN X Y, YU J N, XU X M. Advances in Pueraria lobata polysaccharide and relationship of its structure and activity [J]. Science and Technology of Food Industry, 2019, 40(20): 356−362.(in Chinese) [29] 肖军霞, 黄国清, 迟玉森. 樱桃花色苷的提取及抗氧化活性研究 [J]. 中国食品学报, 2011, 11(5):70−75. doi: 10.3969/j.issn.1009-7848.2011.05.012XIAO J X, HUANG G Q, CHI Y S. Extraction of anthocyanins from cherry and its antioxidant activity [J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(5): 70−75.(in Chinese) doi: 10.3969/j.issn.1009-7848.2011.05.012 [30] WANG B S, LI B S, ZENG Q X, et al. Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater [J]. Food Chemistry, 2008, 107(3): 1198−1204. doi: 10.1016/j.foodchem.2007.09.049 [31] 王元凤, 金征宇, 魏新林. 茶多糖金属络合物的制备及清除自由基活性研究 [J]. 天然产物研究与开发, 2009, 21(3):382−387. doi: 10.3969/j.issn.1001-6880.2009.03.004WANG Y F, JIN Z Y, WEI X L. Preparation and hydroxyl radical-scavenging effects of tea polysaccharides metal complex [J]. Natural Product Research and Development, 2009, 21(3): 382−387.(in Chinese) doi: 10.3969/j.issn.1001-6880.2009.03.004 [32] 陈艺荃, 潘宏, 魏云华. 山茶花品种观赏性状的主成分分析与观赏价值综合评价 [J]. 福建农业学报, 2019, 34(5):551−559.CHEN Y Q, PAN H, WEI Y H. Principal component analysis and comprehensive evaluation on ornamental value of varieties of Camellia [J]. Fujian Journal of Agricultural Sciences, 2019, 34(5): 551−559.(in Chinese) [33] 王颖, 田应金, 蒋伟, 等. 基于热图和聚类分析的马铃薯矿质元素含量评价 [J]. 分子植物育种, 2019, 17(19):6483−6488.WANG Y, TIAN Y J, JIANG W, et al. Evaluation of potato mineral element content based on heatmap and cluster analysis [J]. Molecular Plant Breeding, 2019, 17(19): 6483−6488.(in Chinese)