Light Response Model and Photosynthetic Parameters of Colored Potatoes
-
摘要:
目的 阐明彩色马铃薯光合光响应特性及其与普通品种(黄、白肉)的差异。 方法 以2个普通和4个彩色马铃薯为材料,评估直角双曲线模型(RH)、非直角双曲线模型(NRH)、直角双曲线修正模型(MRH)和指数模型(EM)对马铃薯光合响应曲线的拟合效果,并对彩色与普通品种的最大净光合速率(Pn-max)、光饱和点(LSP)、光补偿点(LCP)、暗呼吸速率(Rd)和表观量子效率(AQY)等光响应参数进行比较分析。 结果 1)4种模型在弱光阶段的模拟效果均较好,但RH、NRH和EM模型无法拟合光抑制过程,只有MRH模型能对整个光响应过程进行准确拟合,决定系数(R2)均大于0.99,均方根误差和平均绝对误差也最小。2)彩色品种Pn-max均低于普通品种,相比费乌瑞它和闽薯1号分别低6.7%~34.2%和14.8%~40.0%;除红美外,其他3个彩色品种LSP都未超过1 000 μmol·m−2·s−1,远小于普通品种;彩色和普通马铃薯对弱光的利用能力没有明显区别。3)在4个彩色品种中,红美的Pn-max和LSP均最高,但对弱光的利用能力最低,与之相反,闽彩薯3号的弱光利用能力最强。4)气孔导度(Gs)和蒸腾速率(Tr)的光响应过程与净光合速率(Pn)相似,随着光强增大,呈先快速上升后平稳或下降趋势,而胞间CO2浓度(Ci)随光强增大总体呈快速下降后平缓的趋势。 结论 MRH模型对马铃薯光响应曲线的拟合效果最佳;彩色品种(系)的最大净光合速率低于普通品种,光饱和点低,总体表现为光合潜力低,光抑制现象明显,这一结果对通过育种手段来提高彩色马铃薯光合生产力具有一定指导意义,也可为其引种和栽培管理提供参考。 Abstract:Objective Light responses of potato plants bearing colored tubers were studied. Method Gas exchanges of potato leaves on 2 common varieties of yellow and white tubers and 4 of different colored tubers were determined. Collected data were fitted to the simulation models of rectangular hyperbola (RH), non-rectangular hyperbola (NRH), modified rectangular hyperbolic (MRH), and exponential function (EM). Photosynthetic parameters including maximum photosynthetic rate (Pn-max), light saturation point (LSP), light compensation point (LCP), dark respiration rate (Rd), and apparent quantum yield (AQY) on the plants were analyzed. Result (1) All 4 models could adequately simulate the responses under low light, and RH, NRH, and EM failed to predict on photoinhibition. On the other hand, MRH accurately covered the entire light spectrum with a correlation coefficient (R2) greater than 0.99, as well as the smallest root mean square error and mean absolute error, among all models. (2) Pn-max of the colored potatoes were lower than those of the common varieties. They were 6.7%–34.2% lower than that of Favorita and 14.8%–40.0% than that of Minshu 1. Aside from Hongmei, the other 3 colored potatoes showed LSP below 1 000 μmol·m−2·s−1, which was much less than those of the common varieties. No significant difference on the utilization under low light by the two categories of potatoes was observed. (3) Among the 4 colored varieties, Hongmei had the highest Pn-max and LSP, but lowest on the ability to use low light, while Mincaishu 3 exhibited the highest low light utilization. (4) The light response processes of stomatal conductance (Gs) and transpiration rate (Tr) were similar to that of net photosynthetic rate (Pn). They rose rapidly as the light intensity increased and then leveled off or declined. In contrast, the intercellular CO2 concentration (Ci) showed a sharp decline before stabilization. Conclusion The Pn-max and LSP of potato varieties that bore colored tubers were significantly lower than those of the common varieties indicating a lower photosynthetic potential and apparent photoinhibition. The information might lead to improved breeding and cultivation practices of colored potatoes. -
Key words:
- Colored potato /
- light response /
- model fitting /
- photosynthetic parameters
-
图 1 4种光响应模型拟合的彩色马铃薯光响应曲线
注:Obs、RH、NRH、MRH和EM分别代表观测值、直角曲线模型、非直角双曲线模型、直角双曲线修正模型和指数模型。
Figure 1. Light response of colored potato fitted on 4 models
Note: Obs: observed data; RH: rectangular hyperbola model; NRH: non-rectangular hyperbola model; MRH: modified rectangular hyperbolic model; EM: exponential model.
表 1 6个参试品种基本信息
Table 1. Information on 6 potato varieties under study
品种
Variety茎色
Stem color叶色
Leaf color肉色
Flesh color皮色
Tuber color薯形
Tuber shape芽眼深浅
Eye depth费乌瑞它 Favorita 绿色 绿色 黄 黄 椭圆 浅 闽薯1号 Minshu1 绿色 绿色 黄 黄 长椭圆 浅 黑金刚 Heijingang 绿带褐 绿色 紫 紫 扁椭圆 中 闽彩薯3号 Mincaishu 3 绿带褐 深绿 紫 紫 长椭圆 浅 红美 Hongmei 绿带褐 绿色 红 红 扁椭圆 中 闽彩薯4号 Mincaishu 4 绿带褐 深绿 红 红 长椭圆 浅 表 2 4种光响应模型及其数学表达式
Table 2. Light response models
模型
Model数学表达式
Mathematical expressions直角双曲线模型 RH ${P_{\rm n}}\left( I \right) = \dfrac{ {\alpha I{P_{ {\rm n}{\simfont\text{-} }{\rm max} } } } }{ {\alpha I + {P_{ {\rm n}{\simfont\text{-} }{\rm max} } } } } - {R_{\rm d}}\qquad\qquad \qquad \qquad \qquad \left( 1 \right)$ 非直角双曲线模型 NRH ${P_{\rm n} }\left( I \right) = \dfrac{ {\alpha I + {P_{ {\rm n}{\simfont\text{-} }{\rm max} } } - \sqrt { { {\left( {\alpha I + {P_{ {\rm n}{\simfont\text{-} }{\rm max} } } } \right)}^2} - 4\theta \alpha I{P_{ {\rm n{\simfont\text{-} } {\rm max} }} } } } }{ {2\theta } } - {R_{\rm d} } \qquad \qquad \left( 2 \right)$ 直角双曲线修正模型 MRH ${P_{\rm n}}\left( I \right) = \dfrac{ {\alpha \left( {1 - \beta I} \right)} }{ {1 + \gamma I} }I - {R_{\rm d}}\qquad \qquad \qquad \qquad \left( 3 \right)$ 指数模型 EM ${P_{\rm n} }\left( I \right) = {P_{ {\rm n}{\simfont\text{-} }{\rm max} } }\left( {1 - {e^{ - \alpha I/{P_{{\rm n} {\simfont\text{-} }{\rm max}} } } } } \right) - {R_{\rm d} } \qquad \qquad \qquad \left( 4 \right)$ 注:I: 光合有效辐射; α: 初始量子效率;θ: 反应曲线弯曲度的参数;β和γ: 独立于I的系数。
Note: I: photosynthetically active radiation (PAR); α: initial quantum efficiency; θ: parameter on curvature of reaction curve, 0≤θ≤1; β and γ: coefficients independent of I.表 3 4种光响应模型的拟合优度
Table 3. Goodness-of-fit on 4 light response models
品种
Variety模型
Model决定系数 R2 均方根误差
RMSE平均绝对误差
MAE费乌瑞它
FavoritaRH 0.983 3 0.75 0.50 NRH 0.987 1 0.66 0.44 MRH 0.994 8 0.42 0.33 EM 0.988 8 0.62 0.47 闽薯1号
Minshu 1RH 0.997 0 0.35 0.27 NRH 0.998 8 0.22 0.16 MRH 0.999 5 0.14 0.12 EM 0.997 5 0.32 0.25 黑金刚
HeijingangRH 0.936 8 1.09 0.91 NRH 0.967 3 0.79 0.61 MRH 0.995 8 0.29 0.23 EM 0.970 8 0.75 0.53 闽彩薯3号
Mincaishu 3RH 0.909 0 1.34 1.06 NRH 0.943 6 1.07 0.76 MRH 0.999 0 0.14 0.12 EM 0.947 4 1.04 0.68 红美
HongmeiRH 0.992 8 0.47 0.41 NRH 0.998 8 0.19 0.12 MRH 0.998 9 0.18 0.15 EM 0.999 0 0.18 0.16 闽彩薯4号
Mincaishu 4RH 0.903 0 1.04 0.90 NRH 0.949 5 0.77 0.58 MRH 0.992 6 0.30 0.27 EM 0.951 2 0.75 0.58 注:RH、NRH、MRH和EM分别代表直角曲线模型、非直角双曲线模型、直角双曲线修正模型和指数模型。
Note: RH: rectangular hyperbola model; NRH: non-rectangular hyperbola model; MRH: modified rectangular hyperbolic model; and, EM: exponential model.表 4 直角双曲线修正模型拟合的彩色马铃薯Pn-光响应曲线特征参数
Table 4. Photosynthetic parameters of colored potato on Pn-PAR curves fitted in MRH model
品种
Variety初始量子效率α 最大净光合速率
Pn-max/(μmol·m−2·s−1)光饱和点
LSP/(μmol·m−2·s−1)光补偿点
LCP/(μmol·m−2·s−1)暗呼吸速率
Rd/(μmol·m−2·s−1)表观量子效率
AQY费乌瑞它
Favorita0.077±0.028 b 15.65±1.85 ab 1 169.8±26.1 c 6.19±0.65 ab 0.449±0.075 bc 0.054±0.001 ab 闽薯1号
Minshu 10.090±0.002 ab 17.14±1.06 a 1 730.3±134.2 a 7.15±0.51 a 0.624±0.030 ab 0.057±0.003 a 黑金刚
Heijingang0.098±0.008 ab 12.82±0.92 bc 948.7±51.7 d 6.59±0.20 ab 0.625±0.065 ab 0.054±0.002 ab 闽彩薯3号
Mincaishu 30.078±0.003 b 13.28±1.59 bc 801.8±55.7 de 5.26±0.06 b 0.404±0.021 c 0.052±0.003 abc 红美
Hongmei0.074±0.006 b 14.60±1.18 ab 1 438.4±97.6 b 7.00±0.72 ab 0.665±0.100 a 0.047±0.001 c 闽彩薯4号
Mincaishu 40.107±0.011 a 10.29±0.51 c 665.8±12.8 e 6.45±0.87 ab 0.570±0.058 abc 0.051±0.004 bc F值 F Value 3.31 6.03* 72.93** 2.29 4.57 5.68* 注:同列数据后不同字母表示不同品种(系)间在0.05水平差异显著。
Note: Data with different letters on same column indicate significant differences at 0.05 level. -
[1] 罗文彬, 李华伟, 许国春, 等. 彩色马铃薯种质资源的引进与评价 [J]. 福建农业学报, 2019, 34(3):278−283.LUO W B, LI H W, XU G C, et al. Introduction and evaluation of colored potato germplasms [J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 278−283.(in Chinese) [2] 仇菊, 朱宏, 刘鹏, 等. 我国彩色马铃薯主栽品种的营养成分分析 [J]. 中国食物与营养, 2018, 24(11):10−14. doi: 10.3969/j.issn.1006-9577.2018.11.002QIU J, ZHU H, LIU P, et al. Analysis on nutrients of main cultivars of colored fleshed potatoes in China [J]. Food and Nutrition in China, 2018, 24(11): 10−14.(in Chinese) doi: 10.3969/j.issn.1006-9577.2018.11.002 [3] LACHMAN J, HAMOUZ K, ORSÁK M, et al. Impact of selected factors - Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes [J]. Food Chemistry, 2012, 133(4): 1107−1116. doi: 10.1016/j.foodchem.2011.07.077 [4] HAN K H, SHIMADA K I, SEKIKAWA M, et al. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats [J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(5): 1356−1359. doi: 10.1271/bbb.70060 [5] WANG Q Y, CHEN Q, HE M L, et al. Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells [J]. Nutrition and Cancer, 2011, 63(7): 1044−1052. doi: 10.1080/01635581.2011.597538 [6] 肖继坪, 李俊, 郭华春. 彩色马铃薯类黄酮-3-O-葡萄糖基转移酶基因(3GT)的生物信息学和表达分析 [J]. 分子植物育种, 2015, 13(5):1017−1026.XIAO J P, LI J, GUO H C. Bioinformatical and expression analysis of UDP-glucose: flavonoid-3-O-glucosyltransferase gene from pigmented potato [J]. Molecular Plant Breeding, 2015, 13(5): 1017−1026.(in Chinese) [7] ŠULC M, KOTÍKOVÁ Z, PAZNOCHT L, et al. Changes in anthocyanidin levels during the maturation of color-fleshed potato (Solanum tuberosum L.) tubers [J]. Food Chemistry, 2017, 237: 981−988. doi: 10.1016/j.foodchem.2017.05.155 [8] 原霁虹, 赵菊梅, 陈亚兰, 等. 甘肃省定西地区引种彩色马铃薯性状比较及产量评价 [J]. 中国食物与营养, 2019, 25(9):14−16. doi: 10.3969/j.issn.1006-9577.2019.09.003YUAN J H, ZHAO J M, CHEN Y L, et al. Trait comparison and yield evaluation of color potato introduced into Dingxi of Gansu Province [J]. Food and Nutrition in China, 2019, 25(9): 14−16.(in Chinese) doi: 10.3969/j.issn.1006-9577.2019.09.003 [9] JANSEN G, FLAMME W. Coloured potatoes (Solanum tuberosum L.)–anthocyanin content and Tuber quality [J]. Genetic Resources and Crop Evolution, 2006, 53(7): 1321−1331. doi: 10.1007/s10722-005-3880-2 [10] 张宝林, 高聚林, 刘克礼. 马铃薯群体光合系统参数的研究 [J]. 中国马铃薯, 2003, 17(3):146−151. doi: 10.3969/j.issn.1672-3635.2003.03.004ZHANG B L, GAO J L, LIU K L. Change in some parameters relative to photosynthesis in potato population [J]. Chinese Potato, 2003, 17(3): 146−151.(in Chinese) doi: 10.3969/j.issn.1672-3635.2003.03.004 [11] 李国良, 林赵淼, 许泳清, 等. 不同类型甘薯光合光响应曲线拟合及比较分析 [J]. 福建农业学报, 2018, 33(7):687−690.LI G L, LIN Z M, XU Y Q, et al. Photosynthesis-light response models for varieties of sweet potato [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 687−690.(in Chinese) [12] 方霞, 柏志靓, 周生财, 等. 大叶桢楠和小叶桢楠光合生理特性比较 [J]. 园艺学报, 2019, 46(5):964−974.FANG X, BAI Z L, ZHOU S C, et al. The Photosynthetic Characteristics of Phoebe zhennan f. elliptical and P. Zhennan f. oblong [J]. Acta Horticulturae Sinica, 2019, 46(5): 964−974.(in Chinese) [13] 叶子飘. 光合作用对光和CO2响应模型的研究进展 [J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012YE Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740.(in Chinese) doi: 10.3773/j.issn.1005-264x.2010.06.012 [14] 黄美杰, 朱炎辉, 孙慧生, 等. 干旱胁迫下马铃薯品种‘克新1号’的光响应曲线 [J]. 中国马铃薯, 2012, 26(6):325−328. doi: 10.3969/j.issn.1672-3635.2012.06.004HUANG M J, ZHU Y H, SUN H S, et al. Light response curve of photosynthesis of potato variety ‘kexin 1’ under drought stress [J]. Chinese Potato Journal, 2012, 26(6): 325−328.(in Chinese) doi: 10.3969/j.issn.1672-3635.2012.06.004 [15] 张贵合, 郭华春. PVY和PVS病毒复合侵染对马铃薯光合及营养品质的影响 [J]. 西北植物学报, 2017, 37(8):1569−1576. doi: 10.7606/j.issn.1000-4025.2017.08.1569ZHANG G H, GUO H C. Variation of photosynthesis and nutritional quality of potato after infection with PVY and PVS complex virus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(8): 1569−1576.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.08.1569 [16] 姚玉璧, 雷俊, 牛海洋, 等. CO2浓度升高与增温对半干旱区马铃薯光合特性的协同影响 [J]. 生态环境学报, 2018, 27(5):793−801.YAO Y B, LEI J, NIU H Y, et al. Response of potato photosynthesis to CO2 concentration and temperature rising in the semi-arid region [J]. Ecology and Environmental Sciences, 2018, 27(5): 793−801.(in Chinese) [17] KIRSCHBAUM M U, FARQUHAR G D. Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora [J]. Plant Physiology, 1987, 83(4): 1032−1036. doi: 10.1104/pp.83.4.1032 [18] THORNLEY J H M. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen [J]. Annals of Botany, 1998, 81(3): 421−430. doi: 10.1006/anbo.1997.0575 [19] 叶子飘, 于强. 光合作用光响应模型的比较 [J]. 植物生态学报, 2008, 32(6):1356−1361. doi: 10.3773/j.issn.1005-264x.2008.06.016YE Z P, YU Q. Comparison of new and several classical models of photosynthesis in response to irradiance [J]. Journal of Plant Ecology, 2008, 32(6): 1356−1361.(in Chinese) doi: 10.3773/j.issn.1005-264x.2008.06.016 [20] PRADO C H B A, DE MORAES J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions [J]. Photosynthetica, 1997, 33(1): 103−112. [21] 李玉洁, 赵娜, 曹月娥, 等. 干旱区典型植物梭梭与柽柳的光响应曲线模型拟合 [J]. 江苏农业科学, 2019, 47(22):179−182.LI Y J, ZHAO N, CAO Y E, et al. Simulation of light response curve model of typical plants Haloxylon ammodendron and Tamarix chinensisin in arid area [J]. Jiangsu Agricultural Sciences, 2019, 47(22): 179−182.(in Chinese) [22] 李晓锐, 刘壮壮, 孔德仪, 等. 薄壳山核桃不同品种光响应过程及模型拟合 [J]. 中南林业科技大学学报, 2019, 39(5):42−48.LI X R, LIU Z Z, KONG D Y, et al. Light response in different pecan cultivars and model fitting of the process [J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 42−48.(in Chinese) [23] 叶英林, 欧立军, 邹学校. 辣椒不同紫色程度叶片的光合特性及光响应模型拟合研究[J]. 园艺学报, 2018, 45(6): 1101-1114.YE Y L, OU L J, ZOU X X. Photosynthetic characteristics and light response model fitting of pepper leaves in different degrees of purple[J]. Acta Horticulturae Sinica, 2018, 45(6): 1101-1114. (in Chinese) [24] 杜澜, 夏捷, 李海花, 等. 逐步失水过程中绿竹光响应进程及其拟合 [J]. 应用生态学报, 2019, 30(6):2011−2020.DU L, XIA J, LI H H, et al. Light response process and simulation of Dendrocalamopsis oldhami in the process of gradual water loss [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2011−2020.(in Chinese) [25] 陈吉玉, 冯铃洋, 高静, 等. 光照强度对苗期大豆叶片气孔特性及光合特性的影响 [J]. 中国农业科学, 2019, 52(21):3773−3781. doi: 10.3864/j.issn.0578-1752.2019.21.006CHEN J Y, FENG L Y, GAO J, et al. Influence of light intensity on stoma and photosynthetic characteristics of soybean leaves [J]. Scientia Agricultura Sinica, 2019, 52(21): 3773−3781.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.21.006 [26] 章毅, 蔡建国, 孙欧文, 等. 水淹胁迫下绣球光合响应机制的研究 [J]. 核农学报, 2019, 33(4):808−815. doi: 10.11869/j.issn.100-8551.2019.04.0808ZHANG Y, CAI J G, SUN O W, et al. Research on photosynthetic responses mechanisms of Hydrangea macrophylla under waterlogging stress [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 808−815.(in Chinese) doi: 10.11869/j.issn.100-8551.2019.04.0808 [27] 韩晓, 王海波, 王孝娣, 等. 基于4种光响应模型模拟不同砧木对夏黑葡萄耐弱光能力的影响 [J]. 应用生态学报, 2017, 28(10):3323−3330.HAN X, WANG H B, WANG X D, et al. Effects of different rootstocks on the weak light tolerance ability of summer black grape based on 4 photo-response models [J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3323−3330.(in Chinese) [28] 董志新, 韩清芳, 贾志宽, 等. 不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征 [J]. 生态学报, 2007, 27(6):2272−2278. doi: 10.3321/j.issn:1000-0933.2007.06.016DONG Z X, HAN Q F, JIA Z K, et al. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties [J]. Acta Ecologica Sinica, 2007, 27(6): 2272−2278.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.06.016