Identification and Malachite Green-Degrading Ability of Citrobacter Sp., D3
-
摘要:
目的 筛选获得可高效降解孔雀石绿的菌株。 方法 采用富集驯化的方法对渔业养殖环境中的土著微生物进行分离筛选,获得的降解菌株通过生理生化、扫描电镜和16S rDNA分析进行鉴定,采用单因素试验研究温度、pH及药物初始浓度对菌株降解效率的影响,并对其降解动力学参数进行分析。通过发光细菌法结合高分辨质谱仪对其降解产物的综合毒性和降解途径进行分析。 结果 从上海某渔业养殖池塘中分离到一株孔雀石绿降解菌D3,初步鉴定其为柠檬酸杆菌Citrobacter sp.。菌株D3在pH7~8、温度30~35 ℃的环境中具有较好的生长和降解率,在该条件下,菌株对质量浓度为2 mg·L−1的孔雀石绿的降解率为96.32%,半衰期为0.563 0 d,且其代谢产物隐性孔雀石绿无明显累积;孔雀石绿质量浓度超过30 mg·L−1,菌株生长及降解受到明显抑制。菌体降解孔雀石绿可以用一级反应动力学方程描述,拟合曲线的相关系数在0.916 9~0.963 5。菌株对孔雀石绿的降解产物综合毒性降低明显,72 h降解产物对发光细菌的抑制率降低50%以上。从降解产物中解析获得3种特征降解中间产物,分别为4-二甲氨基二苯基甲酮(m/z=226.12)、N,N-二甲基苯胺(m/z=122.10)和4-二甲氨基-苯酚(m/z=138.09),推测D3菌株对孔雀石绿的降解过程为逐步脱掉苯环获得次级代谢产物。 结论 D3菌株对孔雀石绿具有很好的降解效果,对解决渔业生态中的孔雀石绿残留具有较高的应用价值。 Abstract:Objective A microorganism capable of decomposing malachite green (MG) was identified and its degradation ability studied. Method Indigenous microbes in water samples from aquaculture farms were enriched and domesticated in laboratory to screen for the species that could degrade the organic germicide, MG, a pollutant in aquaculture ponds. Strains showing such capability by physiological and biochemical tests were examined under scanning electron microscopy and identified by a 16S rDNA analysis. A single factor experiment was conducted to determine the effects of temperature, pH, and initial MG concentration on the degradation kinetics of the isolated bacterium. The inoculated culture medium was monitored continuously for the luminescent bacteria toxicity determination and sampled for the high-resolution mass spectrometry analysis to reveal the decomposition pathway. Result An MG-degrading bacterium isolated from the specimens collected at a fish pond in Shanghai was identified as D3 belonging to Citrobacter sp. It exhibited a high rate of growth and MG-degradation on the medium at the pH ranging from 7 to 8 and temperature between 30℃ and 35℃. Its degradation rate under MG 2 mg·L−1 was 96.32% and a half-life of 0.563 0 d with no significant accumulation of leucomalachite green (LMG). Once the MG concentration exceeded 30 mg·L−1, the bacterial growth and degradation effect were significantly hindered. The first-order kinetic degradation function of D3 had a correlation coefficient of 0.916 9–0.963 5. After inoculation for 72 h, the overall toxicity shown on the medium was significantly decreased with more than 50% reduction on the inhibition of the luminescent bacterial growth. Three compounds, 4-dimethylaminodiphenyl ketone (m/z=226.12), N, N-dimethylaniline (m/z=122.10), and 4-dimethylamino-phenol (m/z=138.09), in the metabolites were the degradation intermediates. It appeared that D3 removed the benzene rings in MG step by step to result in those degraded secondary metabolites. Conclusion D3 of Citrobacter sp. might be applied to decontaminate MG in aquaculture ponds. -
Key words:
- Malachite green /
- leucomalachite green /
- microbial degradation
-
表 1 D3菌株在不同初始浓度MG条件下的降解动力学参数
Table 1. Parameters on D3 degradation kinetics of varied starting MG concentrations
初始质量浓度
Initial concentration/(µg·mL−1)降解动力学方程
Degradation kinetics equation相关系数R2 降解半衰期t1/2/d 降解率
Degradation/%2 Ct=1.485 8e−1.231 1t 0.936 0 0.563 0 96.32 5 Ct=4.192 7e−0.636 5t 0.918 1 1.089 92.49 10 Ct=8.977 2e−0.230 6t 0.916 9 3.005 8 85.80 15 Ct=11.712 4e−0.113 6t 0.922 5 6.101 6 72.81 20 Ct=21.289 9e−0.095 9t 0.963 5 7.227 8 66.70 30 Ct=28.962 4e−0.028 6t 0.917 9 24.235 9 25.70 表 2 D3菌株对MG降解产物的综合毒性
Table 2. Toxicity of MG degraded by D3 strain
样品 Sample 相对发光值 RL0 相对发光值 RL(24 h) 抑制率X (24 h)/% 相对发光值 RL(72 h) 抑制率X (72 h)/% D3 100 99.7 0.2 99.4 0.5 MG 100 49.9 50.1 49.2 50.8 MG+D3 100 60.8 39.2 78.1 21.9 -
[1] 刘婧, 张建辉, 冷艳丽, 等. 巯基功能化介孔材料对阳离子染料的吸附应用 [J]. 化学试剂, 2019, 41(7):668−674.LIU J, ZHANG J H, LENG Y L, et al. Adsorption of thiol-functionalized mesoporous materials for cationic dyes [J]. <italic>Chemical Reagents</italic>, 2019, 41(7): 668−674.(in Chinese) [2] ELI A, BRIYAI O F, ABOWEI J F N. A review of some fungi infection in African fish saprolegniasis, dermal mycoses, branchiomyces infection, systemic mycoses and dermocystidium [J]. <italic>Asian Journal of Medical Science</italic>, 2011, 3(5): 198−205. [3] 胡浩光, 刘少彬, 李绪鹏, 等. 水产品中孔雀石绿残留的毒性作用及风险评估 [J]. 农业与技术, 2016, 36(19):117−119, 126.HU H G, LIU S B, LI X P, et al. Toxicity and risk assessment of malachite green residues in aquatic products [J]. <italic>Agriculture and Technology</italic>, 2016, 36(19): 117−119, 126.(in Chinese) [4] 宋娟, 毕小玲, 庄晓洪. 超高效液相色谱-串联质谱法测定水产品中孔雀石绿及其代谢物残留量 [J]. 理化检验:化学分册, 2016, 52(10):1164−1168.SONG J, BI X L, ZHUANG X H. UHPLC-MS/MS Determination of Residual Amounts of Malachite Green and Its Metabolite in Aquatic Products [J]. <italic>Physical Testing and Chemical Analysis(Part B: Chemical Analysis</italic>, 2016, 52(10): 1164−1168.(in Chinese) [5] 范芳芳, 樊成, 魏宁果. 2018年陕西省水产品中4种兽药残留的风险分析 [J]. 农产品加工, 2019(11):68−70.FAN F F, FAN C, WEI N G. Risk analysis of four veterinary drug residues in aquatic products in Shaanxi Province in 2018 [J]. <italic>Farm Products Processing</italic>, 2019(11): 68−70.(in Chinese) [6] 程杏安, 郑子昭, 蒋旭红, 等. 珠江三角洲水域底泥中孔雀石绿、结晶紫及其代谢物分析 [J]. 生态科学, 2015, 34(3):59−64.CHENG X A, ZHENG Z Z, JIANG X H, et al. Analysis of malachite green and crystal violet and its metabolites in water sediment of Pearl River Delta [J]. <italic>Ecological Science</italic>, 2015, 34(3): 59−64.(in Chinese) [7] 梅光明, 郭远明, 张小军, 等. 超高效液相色谱-串联质谱法测定环境底泥中的孔雀石 [J]. 浙江大学学报(农业与生命科学版), 2014, 40(3):330−337.MEI G M, GUO Y M, ZHANG X J, et al. Determination of malachite green in sediment by ultra performance liquid chromatography-mass spectrometry [J]. <italic>Journal of Zhejiang University(Agriculture and Life Sciences)</italic>, 2014, 40(3): 330−337.(in Chinese) [8] 张俊艳, 温裕云, 刘珺, 等. 隐性孔雀石绿在有机溶剂中的光化学降解过程 [J]. 厦门大学学报(自然科学版), 2011, 50(S1):32−37.ZHANG J Y, WEN Y Y, LIU J, et al. Mechanism studies on the photochemical degradation of leucomalachite green in organic solvent media [J]. <italic>Journal of Xiamen University(Natural Science)</italic>, 2011, 50(S1): 32−37.(in Chinese) [9] 徐清艳. 铁酸钴催化Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>降解孔雀石绿的研究 [J]. 山东化工, 2018, 47(22):185−187. doi: 10.3969/j.issn.1008-021X.2018.22.084XU Q Y. The Degradation of malachite green by sodium persulfate with cobalt ferrite [J]. <italic>Shandong Chemical Industry</italic>, 2018, 47(22): 185−187.(in Chinese) doi: 10.3969/j.issn.1008-021X.2018.22.084 [10] ZHANG C, DIAO H W, LU F X, et al. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of <italic>Bacillus vallismortis</italic> [J]. <italic>Bioresource Technology</italic>, 2012, 126: 80−86. doi: 10.1016/j.biortech.2012.09.055 [11] 吴永利, 王莉, 范子睿, 等. 孔雀石绿高效脱色菌的鉴定及降解特性研究 [J]. 安徽建筑大学学报, 2017, 25(1):38−43. doi: 10.11921/j.issn.2095-8382.20170109WU Y L, WANG L, FAN Z R, et al. Identification and characterization of the highly efficient malachite green decolorization strain [J]. <italic>Journal of Anhui Jianzhu University</italic>, 2017, 25(1): 38−43.(in Chinese) doi: 10.11921/j.issn.2095-8382.20170109 [12] 熊晶晶, 徐敏, 林锦钰, 等. 一株耐盐菌的分离鉴定及其孔雀石绿脱色的研究 [J]. 安徽农业大学学报, 2019, 46(1):51−56.XIONG J J, XU M, LIN J Y, et al. Study on decolorization of malachite green by a <italic>Staphylococcus saprophyticus</italic> [J]. <italic>Journal of Anhui Agricultural University</italic>, 2019, 46(1): 51−56.(in Chinese) [13] 柯江波, 胡鲲, 曹海鹏, 等. 孔雀石绿在养殖水和底泥中的残留消除规律 [J]. 南方农业学报, 2014, 45(12):2274−2279. doi: 10.3969/j:issn.2095-1191.2014.12.2274KE J B, HU K, CAO H P, et al. Elimination law of malachite green residue in water and sediment of aquaculture pond [J]. <italic>Journal of Southern Agriculture</italic>, 2014, 45(12): 2274−2279.(in Chinese) doi: 10.3969/j:issn.2095-1191.2014.12.2274 [14] 付萍, 何健龙, 张秀珍, 等. 发光细菌法在浒苔绿潮次生毒性快速检测中的应用 [J]. 科学技术与工程, 2019, 19(1):288−292.FU P, HE J L, ZHANG X Z, et al. The application of luminous bacteria method in rapid detection for secondary toxicity of <italic>Ulva prolifera</italic> green tide decomposition [J]. <italic>Science Technology and Engineering</italic>, 2019, 19(1): 288−292.(in Chinese) [15] 隋成瑶. 发光细菌法在环境监测中的应用 [J]. 黑龙江环境通报, 2018, 42(3):23−25.SUI C Y. Application of luminescent bacteria method in environment monitoring [J]. <italic>Heilongjiang Environmental Journal</italic>, 2018, 42(3): 23−25.(in Chinese) [16] 都林娜, 李刚, 杨玉义, 等. <italic>Enterobacter sp</italic>.CV-v对孔雀石绿的脱色特性及机理研究 [J]. 环境科学学报, 2016, 36(10):3675−3682.DU L N, LI G, YANG Y Y, et al. Decolorization of malachite green by <italic>Enterobacter sp</italic>. CV-v: characteristics and mechanism [J]. <italic>Acta Scientiae Circumstantiae</italic>, 2016, 36(10): 3675−3682.(in Chinese) [17] KOBAYASHI T, TAYA H, WILAIPUN P, et al. Malachite-green-removing properties of a bacterial strain isolated from fish ponds in Thailand [J]. <italic>Fisheries Science</italic>, 2017, 83(5): 827−835. doi: 10.1007/s12562-017-1102-4 [18] JIRAPANJAWAT T, NEY B, TAYLOR M C, et al. The redox cofactor F<sub>420</sub> protects mycobacteria from diverse antimicrobial compounds and mediates a reductive detoxification system [J]. <italic>Applied and Environmental Microbiology</italic>, 2016, 82(23): 6810−6818. doi: 10.1128/AEM.02500-16 [19] 王亚妮, 宋金龙, 韩刚, 等. 孔雀石绿降解菌群多样性及高效降解菌的降解特性分析 [J]. 生物技术通报, 2019(9):150−155.WANG Y N, SONG J L, HAN G, et al. Analysis of diversity of malachite green-degrading microbial community and degradation characteristics of efficiently-degrading bacteria [J]. <italic>Biotechnology Bulletin</italic>, 2019(9): 150−155.(in Chinese) [20] YANG J, YANG X D, LIN Y H, et al. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism [J]. <italic>PLoS One</italic>, 2015, 10(5): e0127714. doi: 10.1371/journal.pone.0127714 [21] WANG J A, GAO F, LIU Z Z, et al. Pathway and molecular mechanisms for malachite green biodegradation in <italic>Exiguobacterium sp</italic>. MG2 [J]. <italic>PLoS One</italic>, 2012, 7(12): e51808. doi: 10.1371/journal.pone.0051808