Light and Temperature Effects on Agronomic Indices of Brassica chinensis L. in a Simulated Greenhouse Test
-
摘要:
目的 研究小白菜在温室环境下的农艺指标动态,揭示小白菜形态和产量形成过程。 方法 以耐热品种华冠小白菜为试材,在薄膜温室内开展水培试验。试验过程中,实时采集温室环境数据,并定期测定小白菜农艺指标。根据小白菜农艺指标与温度和光合有效辐射的关系,构建基于光温效应(LTF)的温室小白菜农艺指标动态模拟模型,并应用不同播期的试验数据对模型进行验证。 结果 结果表明,小白菜株高、叶数、叶面积、茎粗、根长、鲜重等农艺指标均随LTF的增加而增长,拟合方程可用S型生长曲线函数描述。LTF模型的预测效果优于辐热积(TEP)模型和积温(GDD)模型;其不仅改善了农艺指标的模拟精度,且拟合度较佳。各项农艺指标模拟值与实测值之间的决定系数(R2)为0.907~0.984;回归估计标准误差(RMSE)为0.540~34.393,相对误差(RE)为6.79%~12.66%,RMSE和RE分别为TEP、GDD模型的5.29%~59.98%、31.30%~96.23%。 结论 基于LTF的模型预测值与实测值吻合度较好,预测精度较高,可为温室小白菜生长模拟提供参考。 Abstract:Objective By studying changes on the agronomic properties of Brassica chinensis L. in response to the light and temperature conditions in a greenhouse, morphology and yield of the plant were investigated. Method A hydroponics experiment with a heat-resistant B. chinensis in a greenhouse was carried out. The environmental data were collected in real time, and the agronomic properties of the plants monitored continuously. Relationship between the plant agronomy and the greenhouse temperature and photosynthetically active radiation (or, the light and temperature function, LTF) was used to compare with other dynamic simulation models. Result The agronomic indices including plant height, leaf number, leaf area, stem diameter, root length, and fresh weight of B. chinensis increased with increasing LTF in a fitting equation of an s-shaped function. Prediction by the LTF-based model was better than either TEP- or GDD-based model. The LTF model was not only more precise but also better fitted between the simulated and measured agronomic indices. It showed a R2 of 0.907-0.984, a RMSE of 0.540-34.393, and a RE of 6.79-12.66%, which were superior to the RMSE and RE of 5.29-59.98% and 31.30-96.23% for TEP and GDD models, respectively. Conclusion The LTF-based model was found to more accurately predict the growth and yield of B. chinensis than did the other models. -
Key words:
- Greenhouse /
- Brassica chinensis L. /
- light and temperature function /
- agronomy /
- simulation
-
表 1 试验期间环境温度和光合有效辐射情况
Table 1. Ambient temperature and photosynthetically active radiation applied for experimentation
试验期
Experiment天数
Days/d日平均气温
Daily average temperature/℃日光合有效辐射
Daily photosynthetically active radiation/(mol·m−2·d−1)最大值
Maximum最小值
Minimum均值
Mean最大值
Maximum最小值
Minimum均值
Mean1 32 35.87 27.47 33.51 16.86 3.61 10.65 2 36 36.38 31.62 34.51 19.58 0.001 8.18 3 30 34.83 31.25 33.26 19.30 7.67 13.64 表 2 小白菜单株株高、叶数、叶面积、茎粗、根长、鲜重与光温效应、辐热积以及积温的拟合结果
Table 2. Individual plant height, leaf number, leaf area, stem diameter, root length, and fresh weight of B. chinensis as affected by LTF, TEP or GDD
指标
Index方程
EquationR2 RMSE 指标
Index方程
EquationR2 RMSE 株高
Plant height23.539 3 EXP[−EXP
(0.393 9−0.150 7 LTF)]0.960 1.097 茎粗
Stem diameter−16.657 9 EXP[−EXP
(1.017 2−0.068 5 LTF)]0.980 0.310 −18.353 2/[1+(TEP/53.802 0)1.973 3]+
24.050 80.956 1.156 −17.041 5 EXP[−EXP
(1.066 5−0.009 5 TEP)]0.979 0.314 −18.227 9/[1+(GDD/346.882 2)1.851 7]+
23.986 20.964 1.047 12.428 7 EXP[−EXP
(0.950 0−0.001 7 GDD)]0.985 0.263 叶数
Leaf number−20.385 1/[1+(LTF/18.317 6)3.270 0]+
24.868 90.989 0.420 根长
Root length−28.524 1/[1+(LTF/18.260 6)1.2605 9]+
32.544 80.976 0.755 −29.309 3/[1+(TEP/154.911 0)2.998 7]+
33.748 20.987 0.451 −24.971 9/[1+(TEP/101.637 62)1.413 29]+
28.806 060.971 0.836 −16.807 5/[1+(GDD/785.289 5)3.442 2]+
21.349 90.988 0.434 −24.030 76/[1+(GDD/659.621 19)1.338 13]+
27.959 840.973 0.802 叶面积
Leaf area26 248 000 EXP[−EXP
(2.613 8−0.014 5 LTF)]0.978 39.761 鲜重
Fresh weight8 347.241 8 EXP[−EXP
(2.153 1−0.034 2 LTF)]0.967 5.696 30.496 0−1.419 1 TEP+0.054 9 TEP2 0.963 51.538 4 037 040 EXP[−EXP
(2.680 0−0.002 43TEP)]0.972 5.256 34 100.942 0 EXP[−EXP
(1.964 9−0.000 7 GDD)]0.984 34.089 −1 006.914 6 EXP[−EXP
(1.895 8−0.001 1 GDD)]0.971 5.311 表 3 基于光温效应、辐热积以及积温的小白菜单株株高、叶数、叶面积、茎粗、根长、鲜重模型检验结果
Table 3. Test results of LTF, TEP and GDD models on individual plant height, leaf number, leaf area, stem diameter, root length, and fresh weight of B. chinensis
指标
Index拟合方法
Fitting methodR2 RMSE RE(%) 指标
Index拟合方法
Fitting methodR2 RMSE RE(%) 株高
Plant heighLTF 0.946 1.106 6.79 茎粗
Stem diameterLTF 0.936 0.540 12.66 TEP 0.874 1.843 11.32 TEP 0.744 1.415 33.18 GDD 0.943 1.200 7.38 GDD 0.897 0.712 16.69 叶数
Leaf numberLTF 0.966 0.697 8.24 根长
Root lengthLTF 0.907 1.338 9.97 TEP 0.346 6.586 77.89 TEP 0.763 2.494 18.59 GDD 0.947 0.998 11.81 GDD 0.912 1.390 10.36 叶面积
Leaf areaLTF 0.981 34.393 11.21 鲜重
Fresh weightLTF 0.984 3.733 11.83 TEP 0.630 297.276 96.91 TEP 0.463 70.648 223.80 GDD 0.891 109.891 35.82 GDD 0.922 10.637 33.69 -
[1] 周成波. 光质对小白菜生长及生理特性的影响[D]. 泰安: 山东农业大学, 2017.ZHOU C B. Effect of light quality on growth and physiological characteristics of pakchoi[D]. Taian, China: Shandong Agricultural University, 2017. (in Chinese) [2] FREDE K, SCHREINER M, BALDERMANN S. Light quality-induced changes of carotenoid composition in pakchoi (<italic>Brassica rapa </italic>ssp.<italic>chinensis</italic>) [J]. <italic>Journal of Photochemistry and Photobiology. B, Biology</italic>, 2019, 193: 18−30. doi: 10.1016/j.jphotobiol.2019.02.001 [3] 陆海洋, 刘晓英, 司聪聪, 等. 不同光密度对不结球白菜的生长与品质的影响 [J]. 植物生理学报, 2015, 51(6):909−915.LU H Y, LIU X Y, SI C C, et al. Effects of different PPFD on growth and quality of non-heading Chinese cabbages [J]. <italic>Plant Physiology Journal</italic>, 2015, 51(6): 909−915.(in Chinese) [4] 陈岚. 补充紫外线-B照射对不结球白菜生长与品质及生理特性的影响[D]. 南京: 南京农业大学, 2007.CHEN L. Effects of supplementary ultraviolet-B radiation on plant growth, quality and physiology characteristics of non-heading Chinese cabbage[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese) [5] 薛思嘉, 杨再强, 李军. 高温对小白菜品质的影响及模拟研究 [J]. 中国生态农业学报, 2017, 25(7):1042−1051.XUE S J, YANG Z Q, LI J. Effect of high-temperature on the quality of pakchoi and its simulation [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2017, 25(7): 1042−1051.(in Chinese) [6] 谭文, 杨再强, 李军. 基于温光效应的小白菜营养品质模拟模型研究 [J]. 中国农业气象, 2016, 37(1):59−67. doi: 10.3969/j.issn.1000-6362.2016.01.008TAN W, YANG Z Q, LI J. Simulation of nutrient quality of pakchoi based on temperature-light function [J]. <italic>Chinese Journal of Agrometeorology</italic>, 2016, 37(1): 59−67.(in Chinese) doi: 10.3969/j.issn.1000-6362.2016.01.008 [7] 况媛媛, 徐海, 陈龙正, 等. 湿害胁迫对不结球白菜生长及生理的影响 [J]. 江苏农业学报, 2014, 30(5):1115−1118. doi: 10.3969/j.issn.1000-4440.2014.05.029KUANG Y Y, XU H, CHEN L Z, et al. Growth and physiological changes induced by waterlogging in non-heading Chinese cabbage (<italic>Brassica campestris</italic> L. ssp. <italic>Chinensis</italic> Makino) [J]. <italic>Jiangsu Journal of Agricultural Sciences</italic>, 2014, 30(5): 1115−1118.(in Chinese) doi: 10.3969/j.issn.1000-4440.2014.05.029 [8] 徐磊, 蒋芳玲, 吴震, 等. 基质含水量和光照度对不结球白菜生长及品质的影响 [J]. 江苏农业学报, 2009, 25(4):865−870. doi: 10.3969/j.issn.1000-4440.2009.04.030XU L, JIANG F L, WU Z, et al. Effects of substrate water content and light intensity on growth and quality of non-heading Chinese cabbage [J]. <italic>Jiangsu Journal of Agricultural Sciences</italic>, 2009, 25(4): 865−870.(in Chinese) doi: 10.3969/j.issn.1000-4440.2009.04.030 [9] 张仟雨, 聂磊云, 李萍, 等. 大气CO<sub>2</sub>浓度升高对小白菜生长发育及品质的影响 [J]. 山西农业科学, 2017, 45(3):428−432. doi: 10.3969/j.issn.1002-2481.2017.03.27ZHANG Q Y, NIE L Y, LI P, et al. Effects of elevated CO<sub>2</sub> on pakchoi growth and quality [J]. <italic>Journal of Shanxi Agricultural Sciences</italic>, 2017, 45(3): 428−432.(in Chinese) doi: 10.3969/j.issn.1002-2481.2017.03.27 [10] 谢静静. 化肥减量配施生物菌肥对不结球白菜生长及产量和品质的影响[D]. 南京: 南京农业大学, 2015.XIE J J. Effects of bio-bacterial manure with reduction of chemical fertilizer on growth, yield and quality of non-heading Chinese cabbage[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese) [11] YASMIN K K, ALI B, CUI X Q, et al. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (<italic>Brassica rapa</italic> ssb. <italic>Chinensis</italic> L.) on phytoavoidation of Cd to reduce potential dietary toxicity [J]. <italic>Ecotoxicology and Environmental Safety</italic>, 2017, 141: 129−138. doi: 10.1016/j.ecoenv.2017.03.020 [12] 杨再强, 黄海静, 金志凤, 等. 基于光温效应的杨梅生育期模型的建立与验证 [J]. 园艺学报, 2011, 38(7):1259−1266.YANG Z Q, HUANG H J, JIN Z F, et al. Development and validation of a photo-thermal effectiveness based simulation model for development of <italic>Myrica rubra</italic> [J]. <italic>Acta Horticulturae Sinica</italic>, 2011, 38(7): 1259−1266.(in Chinese) [13] LARSEN R, PERSSON L. Modelling flower development in greenhouse <italic>Chrysanthemum</italic> cultivars in relation to temperature and response group [J]. <italic>Scientia Horticulturae</italic>, 1999, 80(1): 73−89. [14] 李永秀, 罗卫红, 倪纪恒, 等. 基于辐射和温度热效应的温室水果黄瓜叶面积模型 [J]. 植物生态学报, 2006, 30(5):861−867. doi: 10.3321/j.issn:1005-264X.2006.05.017LI Y X, LUO W H, NI J H, et al. Simulation of greenhouse cucumber leaf area based on radiation and thermal effectiveness [J]. <italic>Journal of Plant Ecology</italic>, 2006, 30(5): 861−867.(in Chinese) doi: 10.3321/j.issn:1005-264X.2006.05.017 [15] 徐国彬, 罗卫红, 陈发棣, 等. 温度和辐射对一品红发育及主要品质指标的影响 [J]. 园艺学报, 2006, 33(1):168−171. doi: 10.3321/j.issn:0513-353X.2006.01.039XU G B, LUO W H, CHEN F D, et al. Effects of temperature and solar radiation on <italic>Euphorbia</italic> pulcherrim a development and main quality indices [J]. <italic>Acta Horticulturae Sinica</italic>, 2006, 33(1): 168−171.(in Chinese) doi: 10.3321/j.issn:0513-353X.2006.01.039 [16] 雷波. 水培生菜生长发育模型的建立[D]. 武汉: 华中农业大学, 2009.LEI B. Models to estimate growth and development of hydroponic lettuce[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) [17] 韩娴博, 戴剑锋, 徐蕊, 等. 防虫网覆盖塑料大棚小白菜采收期与产量预测模型 [J]. 农业工程学报, 2008, 24(12):155−160. doi: 10.3321/j.issn:1002-6819.2008.12.033HAN X B, DAI J F, XU R, et al. Prediction model for harvest date and yield of <italic>Brassica chinensis</italic> L. in plastic tunnels covered with insect-proof screens [J]. <italic>Transactions of the Chinese Society of Agricultural Engineering</italic>, 2008, 24(12): 155−160.(in Chinese) doi: 10.3321/j.issn:1002-6819.2008.12.033 [18] 李娟, 郭世荣, 罗卫红. 温室黄瓜光合生产与干物质积累模拟模型 [J]. 农业工程学报, 2003, 19(4):241−244. doi: 10.3321/j.issn:1002-6819.2003.04.060LI J, GUO S R, LUO W H. Simulation model for photosynthesis and dry matter accumulation in greenhouse cucumber [J]. <italic>Transactions of the Chinese Society of Agricultural Engineering</italic>, 2003, 19(4): 241−244.(in Chinese) doi: 10.3321/j.issn:1002-6819.2003.04.060 [19] 丁娟娟, 杨振超, 王鹏勃, 等. LED光强对不结球小白菜生长与光合特性的影响 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(3):113−118.DING J J, YANG Z C, WANG P B, et al. Influence of LED light intensity on growth and photosynthetic characteristics of non-heading Chinese cabbage [J]. <italic>Journal of Northwest A&F University (Natural Science Edition)</italic>, 2015, 43(3): 113−118.(in Chinese) [20] WENTWORTH M, MURCHIE E H, GRAY J E, et al. Differential adaptation of two varieties of common bean to abiotic stressⅡ. Acclimation of photosynthesis [J]. <italic>Journal of Experimental Botany</italic>, 2006, 57(3): 699−709. doi: 10.1093/jxb/erj061 [21] 李曙轩, 何平和, 叶自新. 白菜个体产量的形成及其与叶生长动态的关系 [J]. 园艺学报, 1962, 1(1):49−60.LI S X, HE P H, YE Z X. Formation of individual yield of Chinese cabbage and its relationship with leaf growth dynamics [J]. <italic>Acta Horticulturae Sinica</italic>, 1962, 1(1): 49−60.(in Chinese)