Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome
-
摘要:
目的 从基因表达的水平,初步分析草珊瑚叶和根之间次生代谢差异的分子机制,为二者之间临床疗效差异形成的分子机制分析提供信息。 方法 以福建省福州市的草珊瑚作为样品,采用Illumina HiSeqTM高通量测序技术测定草珊瑚叶和根的转录组,然后经过滤和Trinity组装,得到的unigenes再通过blast与Nr、Nt、Pfam、KOG、Swiss-Prot、Kegg和GO进行比对注释,并对叶和根的基因差异表达进行分析,尤其是对KEGG代谢通路富集的差异基因进行分析。 结果 转录组测序结果共获得0.4亿多个clean reads,经Trinity组装后共得到508 271个unigenes,其平均长度为740 bp,最大长度为17.3 kb。基于blast分析,共有148 561个unigenes在七大功能注释数据库中得到成功注释,占总基因数的58.80%。在分析基因表达水平差异时,发现草珊瑚叶和根的共同基因有93 127个,叶和根的差异基因分别为36 327个和52 268个;同时还发现在29 732种不同表达的unigenes中,有12 511个上调基因和17 221个下调基因;代谢相关KEGG具有显著差异的通路有淀粉和蔗糖代谢、苯丙烷类生物合成、乙醛酸和二羧酸代谢、光合生物的固碳作用、吞噬体、谷胱甘肽代谢、光合作用、丙氨酸、天冬氨酸和谷氨酸代谢、倍半萜类和三萜类生物合成、卟啉和叶绿素代谢、氮素代谢、昼夜节律-植物、光合作用-天线蛋白、芪类、二芳基庚酸和姜酚生物合成、不饱和脂肪酸生物合成、柠檬烯和蒎烯降解、类胡萝卜素生物合成、二萜类生物合成、类黄酮生物合成、脂肪酸延伸等。其中与药效密切相关的次生代谢通路苯丙烷类、倍半萜类和三萜类、二萜类、类黄酮类生物合成等途径分别有193个、82个、40个、35个差异表达基因,而上调倍半萜合酶、ent-kaur-16-烯合酶、黄酮醇合酶/黄烷酮3-羟化酶等基因和下调8-羟基香叶醇脱氢酶、vinorine合酶、角鲨烯合酶等关键酶基因差异显著。 结论 草珊瑚叶和根中苯丙烷类、倍半萜类和三萜类、二萜类、类黄酮次生代谢途径的相关基因差异最为显著,其中差异显著的关键酶基因可为分析其叶和根之间次生代谢差异的分子机制提供重要信息。 Abstract:Objective Base on transcriptome sequencing, the molecular mechanisms that caused the secondary metabolic differences between the leaves and roots of Sarcandra glabra were studied for clinic applications of the two parts, as well as for determination of the effective components in the medicinal herb. Method Specimens of S. glabra were collected from Fuzhou, Fujian for a transcriptome analysis on the leaves and roots using the Illumina HiSeq platform. After filtration and the Trinity assembly, the unigenes were compared with Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO by BLAST, and the differentially expressed genes analyzed. A special attention was paid on the differentially enriched genes in the KEGG metabolic pathway. Result More than 40 million clean reads were obtained from the sequencing. The Trinity assembly yielded 508 271 unigenes with an average length of 740 bp. Based on BLAST, 148 561 unigenes, accounting for 58.80% of the total, were successfully annotated using 7 functional annotation databases. There were 29 732 unigenes identified with differential gene expressions between the leaves and the roots. Of which, 12 511 were up-regulated and 17 221 down-regulated. Dozens of significantly different KEGG metabolic pathways were found that associated with functions such as starch/sucrose metabolism, phenylpropanoid biosynthesis, glyoxylate/dicarboxylate metabolism, carbon fixation in photosynthetic organisms, phagosome/glutathione metabolism, photosynthesis, alanine/aspartate/glutamate metabolism, sesquiterpenoid/triterpenoid biosynthesis, porphyrin/chlorophyll metabolism, nitrogen metabolism, circadian rhythm-plant/photosynthesis-antenna proteins, stilbenoid/diarylheptanoid/gingerol biosynthesis, unsaturated fatty acids biosynthesis, limonene/pinene degradation, carotenoid biosynthesis, diterpenoid biosynthesis, flavonoid biosynthesis, fatty acid elongation, etc. Insofar as pharmacodynamics is concerned, the secondary metabolic pathway of the phenylpropanoid biosynthesis had 193 differentially expressed genes between the leaves and the roots, that of the sesquiterpene/triterpene biosynthesis 82, that of the diterpene biosynthesis 40, and that of the flavonoid biosynthesis 35. In addition, the up-regulated genes of sesquiterpene synthase, ent-kaur-16-ene synthase, and flavonol synthase/flavanone 3-hydroxylase, as well as the down-regulated genes of 8-hydroxygeraniol dehydrogenase, vinornine synthase, and squalene synthase were found significantly different between the two parts. Conclusion The genes related to the secondary metabolic pathways of phenylalanine sesquiterpenoid and triterpenoid, diterpenes, and flavonoids most significantly differed in leaves and roots of S. glabra. The significantly differentiated genes associated with the key enzymes provided important information for analyzing the molecular mechanisms of the medicinal herb. -
表 1 样品RNA测序质量情况
Table 1. Quality of RNA sequencing on samples
样品名 Sample 原始序列数据量 Number of Raw Reads 过滤后的测序数据量 Number of Clean Reads 碱基错误率 Error/% Q20/% Q30/% GC/% L1 48 191 554 47 613 498 0.02 97.69 93.16 45.60 L2 49 296 702 48 604 312 0.02 97.83 93.51 45.70 L3 44 518 042 43 929 418 0.02 97.85 93.48 45.65 R1 48 079 532 47 367 140 0.02 97.77 93.33 45.22 R2 40 631 848 40 030 256 0.02 97.77 93.33 45.31 R3 41 827 608 41 131 944 0.02 97.86 93.71 45.65 注:Q20、Q30:指的是Phred值大于20、30的碱基占总体碱基的百分比;GC:指的是碱基G和C的数量和占总的碱基数量的百分比。
Note: Q20, Q30: the percentage of bases with Phred values greater than 20,30 in total base; GC: the number of bases G and C and the percentage of the total bases number.表 2 转录本拼装长度分布情况
Table 2. Distribution of lengths of transcript assembly
项目
Project最小长度
Min length/bp平均长度
Mean length/bp中位数长度
Median length/bp最大长度
Max length/bpN50/bp N90/bp 总核苷酸
Total nucleotides/个转录本 Transcripts 201 740 418 17 345 1 178 298 376 095 538 基因 Genes 201 1 138 806 17 345 1 627 537 287 368 837 注:N50/N90:指的是将拼接转录本从长到短排序后累加转录本的长度,直到不小于总长50%/90%的拼接转录本的长度。
Note: N50/N90: the length of the spliced transcript that is accumulated after sequencing from long to short until the length of the spliced transcripts is not less than 50/90% of the total length.
表 3 基因注释成功率
Table 3. Success rate of gene annotation
数据库
Database基因数目
Number of Genes占比
Percentage/%在NR数据库有中得到注释
Annotated in NR124 514 49.28 在NT数据库有中得到注释
Annotated in NT62 462 24.72 在PFAM数据库有中得到注释
Annotated in PFAM91 970 36.40 在KOG数据库有中得到注释
Annotated in KOG33 736 13.35 在SwissPro数据库有中得到注释
Annotated in SwissProt87 941 34.81 在KO数据库有中得到注释
Annotated in KO43 227 17.11 在GO数据库有中得到注释
Annotated in GO92 738 36.70 在所有数据库中得到注释
Annotated in all Databases14 603 5.78 至少在一个数据库中得到注释
Annotated in at least one Database148 561 58.80 总基因
Total Unigenes252 630 100.00 表 4 样品差异倍数前10名基因
Table 4. Top 10 genes with multi-fold differentiation in specimens
部位
Position序号
Number基因编号
Gene id读数
Readcount差异倍数
Log2 fold change基因表达说明
NR Description叶 Leaf 1 Cluster-32258.95760 2 209.65 13.54 抗坏血酸过氧化酶 L-ascorbate peroxidase 2 Cluster-32258.103145 3 524.70 13.25 2-甲基-6-植酰苯醌甲基转移酶
2-methyl-6-phytylbenzoquinone methyltranferase3 Cluster-32258.100314 8 286.64 12.59 5′-腺苷硫酸盐还原酶 5′-adenylylsulfate reductase 4 Cluster-32258.72246 957.15 12.33 CBL相互作用蛋白激酶 CBL-interacting protein kinase 5 Cluster-32258.93899 937.73 12.30 叶绿体茎环结合蛋白 chloroplast stem-loop binding protein 6 Cluster-32258.93433 858.84 12.17 逆转录转座子多蛋白 retrotransposon polyprotein 7 Cluster-32258.97994 7 598.24 12.14 细胞质同工酶 cytoplasmic isozyme 8 Cluster-32258.102576 825.51 12.12 淀粉合成酶 stachyose synthase 9 Cluster-32258.52249 796.50 12.07 钾转运体 potassium transporter 10 Cluster-32258.89876 707.29 11.89 赤霉素2-β-双加氧酶 gibberellin 2-beta-dioxygenase 根 Root 1 Cluster-13209.0 29.70 −20.77 葡萄糖6-脱氢酶 glucose 6-dehydrogenase 2 Cluster-32258.15742 11 132.11 −15.97 枯草芽孢杆菌类蛋白酶 subtilisin-like protease 3 Cluster-32258.155788 3 560.27 −14.32 阳离子氨基酸转运体 cationic amino acid transporter 4 Cluster-32258.178815 3 308.58 −14.22 谷胱甘肽S-转移酶 glutathione S-transferase 5 Cluster-32258.178517 2 443.78 −13.78 膜联蛋白样蛋白 annexin-like protein 6 Cluster-32258.184073 2 002.57 −13.49 甘油-3-磷酸2-O-酰基转移酶
glycerol-3-phosphate 2-O-acyltransferase7 Cluster-32258.15882 1 941.66 −13.45 细胞色素 Cytochrome 8 Cluster-32258.15168 1 825.90 −13.36 过氧化物酶超家族蛋白 Peroxidase superfamily protein 9 Cluster-32258.11664 1 596.82 −13.17 黄瓜素 Cucumisin 10 Cluster-32258.15447 1 461.26 −13.04 DNA结合蛋白 DNA-binding protein 表 5 草珊瑚叶和根KEGG富集前20的代谢通路
Table 5. Metabolic pathways of S. glabra leaves and roots with 20 highest KEGG enrichment
序号
Number通路名称
Pathway term富集度
Rich factorq值
q value基因数目
Gene number/个1 淀粉和蔗糖代谢 Starch and sucrose metabolism 0.28 0.004 213 2 苯丙素类生物合成 Phenylpropanoid biosynthesis 0.38 0.000 193 3 乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism 0.33 0.000 161 4 光合生物的固碳作用 Carbon fixation in photosynthetic organisms 0.34 0.000 153 5 吞噬体 Phagosome 0.30 0.007 121 6 谷胱甘肽代谢 Glutathione metabolism 0.29 0.020 119 7 光合作用 Photosynthesis 0.38 0.000 94 8 丙氨酸,天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism 0.29 0.034 86 9 倍半萜类和三萜类生物合成 Sesquiterpenoid and triterpenoid biosynthesis 0.51 0.000 82 10 卟啉和叶绿素代谢 Porphyrin and chlorophyll metabolism 0.32 0.006 82 11 氮素代谢 Nitrogen metabolism 0.36 0.004 64 12 昼夜节律-植物 Circadian rhythm - plant 0.35 0.004 64 13 光合作用-天线蛋白 Photosynthesis - antenna proteins 0.64 0.000 63 14 芪类,二芳基庚酸和姜酚生物合成
Stilbenoid, diarylheptanoid and gingerol biosynthesis0.45 0.000 55 15 不饱和脂肪酸生物合成 Biosynthesis of unsaturated fatty acids 0.32 0.029 55 16 柠檬烯和蒎烯降解 Limonene and pinene degradation 0.33 0.022 53 17 类胡萝卜素生物合成 Carotenoid biosynthesis 0.34 0.022 51 18 二萜类生物合成 Diterpenoid biosynthesis 0.37 0.022 40 19 类黄酮生物合成 Flavonoid biosynthesis 0.46 0.003 35 20 脂肪酸延伸 Fatty acid elongation 0.39 0.024 31 表 6 苯丙烷类代谢途径上差异倍数前10名基因
Table 6. Top 10 genes with multi-fold differentiation on phenylalanine metabolic pathway
部位
Position序号
Number基因编号
Gene id叶中的读数
Leaf readcount根中的读数
Root readcount差异倍数
Log2 fold change基因表达说明
NR Description叶 Leaf 1 Cluster-32258.118654 359.81 1.66 7.64 第三类过氧化物酶 class III peroxidase 2 Cluster-32258.57844 670.29 4.06 7.38 莽草酸氧-羟基肉桂酰基转移酶
shikimate O-hydroxycinnamoyltransferase3 Cluster-32258.75671 22.25 0.00 6.90 溶酶体β葡萄糖苷酶样异构体 X1
lysosomal beta glucosidase-like isoform X14 Cluster-21604.0 18.74 0.00 6.66 假设的蛋白质 VITISV 011546
hypothetical protein VITISV 0115465 Cluster-22722.0 13.73 0.00 6.21 过氧化物酶P7样 peroxidase P7-like 6 Cluster-32258.162333 12.17 0.00 6.03 假设的蛋白质 SPRG_01919
hypothetical protein SPRG 019197 Cluster-32258.93656 10.98 0.00 5.89 过氧化物酶 N1 Peroxidase N1 8 Cluster-32258.59976 181.06 3.49 5.56 假设的蛋白质 PHAVU 010G162700g
hypothetical protein PHAVU 010G162700g9 Cluster-32258.92806 15.42 0.27 5.41 β-葡萄糖苷酶31样 beta-glucosidase 31-like 10 Cluster-32258.105029 15.42 0.27 5.41 β-葡萄糖苷酶31样 beta-glucosidase 31-like 根 Root 1 Cluster-32258.15168 0.00 1 825.90 −13.36 过氧化物酶超家族蛋白 Peroxidase superfamily protein 2 Cluster-32258.179987 0.61 2 036.76 −11.67 8-羟基香叶醇脱氢酶 8-hydroxygeraniol dehydrogenase 3 Cluster-32258.183657 0.00 294.75 −10.73 PRX3过氧氧还蛋白 PRX3 peroxiredoxin 4 Cluster-32258.8233 0.00 275.66 −10.63 过氧化物酶10样 peroxidase 10-like 5 Cluster-10163.0 0.00 208.35 −10.23 未命名蛋白质产品 unnamed protein product 6 Cluster-32258.172620 0.98 798.80 −9.72 可能的甘露醇脱氢酶 probable mannitol dehydrogenase 7 Cluster-32258.23969 9.49 7 453.68 −9.62 可能的甘露醇脱氢酶亚型 X2
probable mannitol dehydrogenase isoform X28 Cluster-32258.874 0.00 131.92 −9.57 过氧化物酶9样 peroxidase 9-like 9 Cluster-32258.179634 0.00 111.64 −9.33 过氧化物酶17样 peroxidase 17-like 10 Cluster-32258.179997 0.32 210.46 −9.28 过氧化物酶7样 peroxidase 7-like 表 7 倍半萜类和三萜类代谢途径上差异倍数前10名基因
Table 7. Top 10 genes with multi-fold differentiation on sesquiterpenoid and triterpenoid metabolic pathways
部位
Position序号
Number基因编号
Gene id叶中的读数
Leaf readcount根中的读数
Root readcount差异倍数
Log2 fold change基因表达说明
NR Description叶 Leaf 1 Cluster-32258.64073 623.05 0.00 11.71 假设的蛋白质 VITISV 030783
hypothetical protein VITISV 0307832 Cluster-32258.111485 2 274.22 2.03 10.17 假设的蛋白质 VITISV 000109
hypothetical protein VITISV 0001093 Cluster-32258.111497 1 356.27 1.76 9.63 未命名蛋白质产品 unnamed protein product 4 Cluster-32258.97968 192.97 0.33 9.06 卤酸脱卤酶样 haloacid dehalogenase-like 5 Cluster-32258.108941 189.67 0.33 9.03 倍半萜合酶 sesquiterpene synthase 6 Cluster-32258.97970 73.89 0.00 8.64 锗烷烯-D合酶 germacrene-D synthase 7 Cluster-32258.70247 66.66 0.00 8.49 倍半萜合酶 sesquiterpene synthase 8 Cluster-32258.102983 1 747.64 5.94 8.13 倍半萜合酶 sesquiterpene synthase 9 Cluster-32258.98251 461.98 1.61 8.12 锗烷烯-D合酶 germacrene-D synthase 10 Cluster-32258.102455 79.05 0.27 7.77 锗烷烯-D合酶 germacrene-D synthase 根 Root 1 Cluster-32258.180183 0.00 548.81 −11.62 细胞色素P45071D11样
cytochrome P450 71D11-like2 Cluster-32258.5750 0.00 177.43 −9.99 (-)-锗烷烯D合酶(-)-germacrene D synthase 3 Cluster-32258.177549 0.00 78.25 −8.82 Valencene合酶样 valencene synthase-like 4 Cluster-32258.5749 0.00 73.25 −8.72 (-)-锗烷烯D合酶(-)-germacrene D synthase 5 Cluster-32258.181501 0.00 61.55 −8.47 未命名蛋白质产物 unnamed protein product 6 Cluster-32258.177548 0.30 67.20 −7.63 Valencene合酶样 valencene synthase-like 7 Cluster-32258.5751 0.00 17.33 −6.64 δ-镉烯合酶同工酶
Delta-cadinene synthase isozyme A8 Cluster-32258.178134 0.00 16.37 −6.56 Valencene合酶样 valencene synthase-like 9 Cluster-32258.7220 0.00 14.12 −6.35 (-)-锗烷烯D合酶
(-)-germacrene D synthase-like10 Cluster-7136.0 0.00 12.04 −6.11 鲨烯合酶 squalene synthase 表 8 二萜类代谢途径上差异倍数前10名基因
Table 8. Top 10 genes with multi-fold differentiation on diterpenes metabolic pathway
部位
Position序号
Number基因编号
Gene id叶中的读数
Leaf readcount根中的读数
Root readcount差异倍数
log2 Fold Change基因表达说明
NR DescriptionLeaf 1 Cluster-32258.89876 707.29 0.00 11.89 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 2 Cluster-32258.89871 257.30 0.00 10.44 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 3 Cluster-32258.89879 124.88 0.00 9.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 4 Cluster-32258.89883 86.18 0.00 8.86 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 5 Cluster-32258.98988 1 138.80 3.04 8.50 ent-Kaur-16-烯合成酶 ent-kaur-16-ene synthase 6 Cluster-32258.89886 62.52 0.00 8.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 7 Cluster-32258.121945 48.27 0.00 8.02 ent-Kaur-16-烯合成酶 ent-kaur-16-ene synthase 8 Cluster-32258.89870 175.69 1.67 6.70 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 9 Cluster-32258.89878 1 829.05 22.15 6.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like 10 Cluster-32258.89868 72.51 0.83 6.24 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like Root 1 Cluster-32258.187014 0.00 377.06 −11.08 en-kaurene氧化酶 ent-kaurene oxidase 2 Cluster-32258.8593 0.00 322.60 −10.86 戊二烯丙基二磷酸合酶 ent-copalyl diphosphate synthase 3 Cluster-32258.177819 0.00 186.82 −10.07 ent-贝壳杉酸氧化酶2样 ent-kaurenoic acid oxidase 2-like 4 Cluster-32258.187433 0.00 176.53 −9.99 ent-贝壳杉酸氧化酶1样 ent-kaurenoic acid oxidase 1-like 5 Cluster-32258.187015 0.00 172.68 −9.96 en-kaurene氧化酶2样 ent-kaurene oxidase 2-like 6 Cluster-32258.13043 0.00 126.65 −9.51 假设的蛋白质F775 52245 hypothetical protein F775 52245 7 Cluster-32258.44968 2.83 1 419.27 −8.97 ent-贝壳杉酸氧化酶1样 ent-kaurenoic acid oxidase 1-like 8 Cluster-32258.187016 0.00 71.95 −8.69 en-kaurene氧化酶2样 ent-kaurene oxidase 2-like 9 Cluster-32258.12198 0.00 53.27 −8.26 ent-贝壳杉酸氧化酶2样 ent-kaurenoic acid oxidase 2-like 10 Cluster-32258.185460 0.00 51.04 −8.19 赤霉素2-β-双加氧酶2-样 gibberellin 2-beta-dioxygenase 2-like 表 9 类黄酮代谢途径上差异倍数前10名基因
Table 9. Top 10 genes with multi-fold differentiation on flavonoids metabolic pathway
部位
Position序号
Number基因编号
Gene id叶中的读数
Leaf readcount根中的读数
Root readcount差异倍数
Log2 fold change基因表达说明
NR Description叶 Leaf 1 Cluster-32258.71949 86.75 0.00 8.87 黄酮醇合成酶/黄酮3-羟化酶
flavonol synthase/flavanone 3-hydroxylase2 Cluster-32258.115774 82.00 0.00 8.79 黄酮醇合成酶/黄酮3-羟化酶
flavonol synthase/flavanone 3-hydroxylase3 Cluster-32258.115780 2 057.23 7.28 8.14 黄酮醇合成酶/黄酮3-羟化酶
flavonol synthase/flavanone 3-hydroxylase4 Cluster-32258.57844 670.29 4.06 7.38 莽草酸氧-羟基肉桂酰基转移酶
shikimate O-hydroxycinnamoyltransferase5 Cluster-32258.90886 7.93 0.00 5.42 查耳酮合酶 chalcone synthase 6 Cluster-32258.71390 6.28 0.00 5.08 莽草酸氧-羟基肉桂酰基转移酶
shikimate O-hydroxycinnamoyltransferase7 Cluster-32258.90882 1 753.10 56.76 4.94 查耳酮合酶 chalcone synthase 8 Cluster-32258.142410 4 158.40 206.09 4.33 查尔酮和二苯乙烯合成酶家族蛋白
Chalcone and stilbene synthase family protein9 Cluster-32258.106648 42.80 2.31 4.20 黄烷酮3-羟化酶 flavanone 3-hidroxylase 10 Cluster-32258.87019 32.35 1.98 4.02 查耳酮合酶 chalcone synthase 根 Root 1 Cluster-32258.10764 0.00 20.79 −6.90 长春瑞碱合成酶 vinorine synthase 2 Cluster-1755.1 0.00 7.72 −5.46 细胞色素 P450CYP75B79样
cytochrome P450 CYP75B79-like3 Cluster-32258.10891 7.38 278.86 −5.25 细胞色素 P450CYP73A100样
cytochrome P450 CYP73A100-like4 Cluster-32258.57819 948.36 9 832.09 −3.37 咖啡酰辅酶-CoAO-甲基转移酶
caffeoyl-CoA O-methyltransferase5 Cluster-32258.152146 295.63 2 811.13 −3.24 4-香豆酸3-羟化酶
5-4-coumarate 3-hydroxylase6 Cluster-32258.66450 15.59 78.37 −2.33 咖啡酰辅酶-CoAO-甲基转移酶
caffeoyl-CoA O-methyltransferase7 Cluster-32258.96920 700.62 2 261.42 −1.69 莽草酸氧-羟基肉桂酰基转移酶
shikimate O-hydroxycinnamoyltransferase8 Cluster-32258.72425 372.27 1 064.20 −1.51 咖啡酰辅酶-CoA3-O-甲基转移酶
caffeoyl-CoA 3-O-methyltransferase9 Cluster-32258.124422 229.83 480.10 −1.06 咖啡酰辅酶-CoAO-甲基转移酶
caffeoyl-CoA O-methyltransferase10 — — — — — -
[1] 福建省科学技术委员会《福建植物志》编写组. 福建植物志: 第四卷 [M]. 福州: 福建科学技术出版社, 1990. [2] 中国科学院《中国植物志》编辑委员会. 中国植物志 [M]. 北京: 科学出版社, 2005: 287 − 290. [3] 国家药典委员会. 中华人民共和国药典: 2015年版 一部 [M]. 北京: 中国医药科技出版社, 2015: 234 − 235. [4] 贾敏如, 李星炜. 中国民族药志要 [M]. 北京: 中国医药科技出版社, 2005: 365 − 366. [5] 杨荣平, 王宾豪, 励娜, 等. GC-MS法分析肿节风叶中挥发油化学成分 [J]. 中成药, 2008, 30(11):1703−1704. doi: 10.3969/j.issn.1001-1528.2008.11.047YANG R P, WANG B H, LI N, et al. Analysis of chemical constituents of essential oil in leaves of Sarcandra glabra by GC-MS [J]. <italic>Chinese Traditional Patent Medicine</italic>, 2008, 30(11): 1703−1704.(in Chinese) doi: 10.3969/j.issn.1001-1528.2008.11.047 [6] 徐丽丽. 全缘金粟兰及草珊瑚的化学成分研究 [D]. 昆明: 云南中医学院, 2016.XU L L. Studies on the chemical constituents of Chloranthus versicolor and Sarcandra glabra [D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2016.(in Chinese) [7] 徐艳琴, 刘小丽, 黄小方, 等. 草珊瑚的研究现状与展望 [J]. 中草药, 2011, 42(12):2552−2559.XU Y Q, LIU X L, HUANG X F, et al. Status and prospect of studies on <italic>Sarcandra</italic> glaba [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2011, 42(12): 2552−2559.(in Chinese) [8] 周斌, 刘可越, 常军, 等. 中药肿节风的化学成分和药理作用研究进展 [J]. 中国现代应用药学, 2009, 26(12):982−986.ZHOU B, LIU K Y, CHANG J, et al. Advances on chemical constituents and pharmacological activities of <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Chinese Journal of Modern Applied Pharmacy</italic>, 2009, 26(12): 982−986.(in Chinese) [9] 姜伶, 李景辉. 中药肿节风的抗肿瘤作用研究进展 [J]. 中国执业药师, 2014, 11(04):29−31, 35.JIANG L, LI J H. Study Progress of Anticancer Effects of Sarcandrae Herba [J]. <italic>China Licensed Pharmacist</italic>, 2014, 11(04): 29−31, 35.(in Chinese) [10] 梅全喜, 胡莹. 肿节风的药理作用及临床应用研究进展 [J]. 时珍国医国药, 2011, 22(1):230−232. doi: 10.3969/j.issn.1008-0805.2011.01.114MEI Q X, HU Y. Research progress in the pharmacological action and clinical application of <italic>Sarcandra glabra</italic> [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2011, 22(1): 230−232.(in Chinese) doi: 10.3969/j.issn.1008-0805.2011.01.114 [11] 孙洪计, 魏慧君. RNA-Seq技术在转录组研究中的应用 [J]. 中外医学研究, 2018, 16(20):184−187.SUN H J, WEI H J. The application of RNA-seq technology in the study of the transcriptome [J]. <italic>Chinese and Foreign Medical Research</italic>, 2018, 16(20): 184−187.(in Chinese) [12] 王媛媛, 杨美青. 药用植物转录组的研究进展 [J]. 安徽农学通报, 2019, 25(8):13−15, 52. doi: 10.3969/j.issn.1007-7731.2019.08.006WANG Y Y, YANG M Q. The advances in transcriptome of medicinal plants [J]. <italic>Anhui Agricultural Science Bulletin</italic>, 2019, 25(8): 13−15, 52.(in Chinese) doi: 10.3969/j.issn.1007-7731.2019.08.006 [13] 唐娟.三个茯苓品种的品质特性及转录组分析 [D].长沙: 湖南农业大学, 2016.TANG J. Analysis of characteristics of quality and the transcriptome of three tuckahoe varieties(Poria cocos)[D].Changsha: Hunan Agricultural University, 2016. [14] 邓楠, 史胜青, 常二梅, 等. 膜果麻黄种子不同发育时期的转录组测序分析 [J]. 东北林业大学学报, 2015, 43(2):28−32. doi: 10.3969/j.issn.1000-5382.2015.02.007DENG N, SHI S Q, CHANG E M, et al. Transcriptomic analysis of germinated seeds of <italic>Ephedra</italic> <italic>przewalskii</italic> [J]. <italic>Journal of Northeast Forestry University</italic>, 2015, 43(2): 28−32.(in Chinese) doi: 10.3969/j.issn.1000-5382.2015.02.007 [15] 谢冬梅, 俞年军, 黄璐琦, 等. 基于高通量测序的药用植物“凤丹”根皮的转录组分析 [J]. 中国中药杂志, 2017, 42(15):2954−2961.XIE D M, YU N J, HUANG L Q, et al. Next generation sequencing and transcriptome analysis of root bark from <italic>Paeonia</italic> <italic>suffruticosa</italic> cv. Feng Dan [J]. <italic>China Journal of Chinese Materia Medica</italic>, 2017, 42(15): 2954−2961.(in Chinese) [16] 陈延清, 胡志刚, 刘大会, 等. 药用植物冬凌草高通量转录组测序与分析 [J]. 中国现代中药, 2018, 20(12):1476−1482.CHEN Y Q, HU Z G, LIU D H, et al. High-throughput transcriptome sequencing and analysis of <italic>Isodon</italic> <italic>rubescens</italic> (hemsl.) H. <italic>Hara</italic> [J]. <italic>Modern Chinese Medicine</italic>, 2018, 20(12): 1476−1482.(in Chinese) [17] 朱孝轩. 长春花转录组与萜类吲哚生物碱代谢途径研究 [D]. 北京: 北京协和医学院, 2015.ZHU X X. Research of transcriptome and biosynthetic pathway of TIAs in Catharanthus roseus [D]. Beijing: Peking Union Medical College, 2015. [18] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. <italic>Nature Biotechnology</italic>, 2011, 29(7): 644−652. doi: 10.1038/nbt.1883 [19] GOTZ S, GARCIA-GOMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite [J]. <italic>Nucleic Acids Research</italic>, 2008, 36(10): 3420−3435. doi: 10.1093/nar/gkn176 [20] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. <italic>Genome Biology</italic>, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8 [21] YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. <italic>Genome Biology</italic>, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14 [22] MIZRACHI E, HEFER C A, RANIK M, et al. De novo assembled expressed gene catalog of a fast-growing <italic>Eucalyptus</italic> tree produced by Illumina mRNA-Seq [J]. <italic>BMC Genomics</italic>, 2010, 11(1): 681. doi: 10.1186/1471-2164-11-681 [23] 穆红梅, 杜秀菊, 张秀省, 等. 植物MYB转录因子调控苯丙烷类生物合成研究 [J]. 北方园艺, 2015(24):171−174.MU H M, DU X J, ZHANG X S, et al. Study on plants MYB Transcription factors regulate biological synthesis of phenylpropanoid metabolism [J]. <italic>Northern Horticulture</italic>, 2015(24): 171−174.(in Chinese) [24] 邵佳. 草珊瑚总黄酮提取纯化及药理作用研究 [D]. 贵阳: 贵州大学, 2008.SHAO J. Study on the extraction, purification and pharmacological action of total flavonoids in Sarcandra glabra [D]. Guiyang: Guizhou University, 2008.(in Chinese) [25] 郑永标, 许小萍, 邹先文, 等. 草珊瑚药材抗氧化活性化学成分研究 [J]. 福建师范大学学报(自然科学版), 2016, 32(3):98−102.ZHENG Y B, XU X P, ZOU X W, et al. Chemical constituents with the antioxidant activity in <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Journal of Fujian Normal University(Natural Science Edition)</italic>, 2016, 32(3): 98−102.(in Chinese) [26] 王敦清, 李先春. 草珊瑚根茎叶中总黄酮成分的研究 [J]. 中草药, 1996, 27(6):337−338.WANG D Q, LI X C. Studies on total flavonoids from root, stem and leaf of glabrous <italic>Sarcandra</italic> (<italic>Sarcandra</italic> <italic>glabra</italic>) [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 1996, 27(6): 337−338.(in Chinese) [27] 陈郑, 哈文波. 高良姜素抗肿瘤作用机制的研究进展 [J]. 医学综述, 2017, 23(9):1752− 1756. doi: 10.3969/j.issn.1006-2084.2017.09.018CHEN Z, HA W B. Research progress of antineoplastic mechanism for galangin [J]. <italic>Medical Recapitulate</italic>, 2017, 23(9): 1752− 1756.(in Chinese) doi: 10.3969/j.issn.1006-2084.2017.09.018 [28] 张旭光, 尹航, 陈峰, 等. 高良姜素药理活性的研究进展 [J]. 中国现代中药, 2016, 18(11):1532−1536.ZHANG X G, YIN H, CHEN F, et al. Advances in study of pharmacological activities of galangin [J]. <italic>Modern Chinese Medicine</italic>, 2016, 18(11): 1532−1536.(in Chinese) [29] 吴少花, 陈君, 刘亚萌, 等. 杨梅素抗肿瘤活性研究进展 [J]. 吉林医药学院学报, 2015, 36(5):381−383.WU S H, CHEN J, LIU Y M, et al. Progress in myricetin antitumor activity [J]. <italic>Journal of Jilin Medical College</italic>, 2015, 36(5): 381−383.(in Chinese) [30] 王潞, 周云英. 杨梅素抗感染、抗炎及抗氧化活性研究进展 [J]. 中草药, 2019, 50(3):778−784. doi: 10.7501/j.issn.0253-2670.2019.03.035WANG L, ZHOU Y Y. Research progress on anti-infective, anti-inflammatory, and anti-oxidant activities of myricetin [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2019, 50(3): 778−784.(in Chinese) doi: 10.7501/j.issn.0253-2670.2019.03.035 [31] 林国钡, 谢燕, 李国文. 杨梅素的研究进展 [J]. 国际药学研究杂志, 2012, 39(6):483−487.LIN G B, XIE Y, LI G W. Research advances of myricetin [J]. <italic>Journal of International Pharmaceutical Research</italic>, 2012, 39(6): 483−487.(in Chinese) [32] 翟广玉, 马海英, 郜蕾. 槲皮素及其衍生物的抗肿瘤活性研究进展 [J]. 化学试剂, 2015, 37(2):97−103.ZHAI G Y, MA H Y, GAO L. Progress of antitumor activity of quercetin and derivatives [J]. <italic>Chemical Reagents</italic>, 2015, 37(2): 97−103.(in Chinese) [33] 陈振华, 胡晓艳, 赵滕, 等. 槲皮素对心血管系统疾病的影响及其新剂型研究进展 [J]. 时珍国医国药, 2019, 30(2):440−443.CHEN Z H, HU X Y, ZHAO T, et al. The research progress of the effect of quercetin on cardiovascular diseases and its new formulations [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2019, 30(2): 440−443.(in Chinese) [34] 张超, 李昌平. 槲皮素治疗非酒精性脂肪性肝病的作用机制研究进展 [J]. 中药新药与临床药理, 2015, 26(5):718−721.ZHANG C, LI C P. Current progress in mechanism of quercetin for treatment of non-alcoholic fatty liver disease [J]. <italic>Traditional Chinese Drug Research and Clinical Pharmacology</italic>, 2015, 26(5): 718−721.(in Chinese) [35] 石玥, 梁晓春. 槲皮素防治神经退行性疾病的机制研究进展 [J]. 中国中西医结合杂志, 2012, 32(10):1432−1435.SHI Y, LIANG X C. The mechanism of quercetin in the prevention and treatment of neurodegenerative diseases [J]. <italic>Chinese Journal of Integrated Traditional and Western Medicine</italic>, 2012, 32(10): 1432−1435.(in Chinese) [36] 包侠萍. 草珊瑚不同部位及不同采收期有效成分含量的考察 [J]. 海峡药学, 2014, 26(12):42−44. doi: 10.3969/j.issn.1006-3765.2014.12.017BAO X P. Study on the content of active components in different parts and harvest time of Caoshanhu [J]. <italic>Strait Pharmaceutical Journal</italic>, 2014, 26(12): 42−44.(in Chinese) doi: 10.3969/j.issn.1006-3765.2014.12.017 [37] 冯鹤翔, 涂轶. 木质素生物合成的研究 [J]. 青岛大学学报(自然科学版), 2018, 31(1):46−54.FENG H X, TU Y. Research on lignin biosynthesis [J]. <italic>Journal of Qingdao University(Natural Science Edition)</italic>, 2018, 31(1): 46−54.(in Chinese) [38] 时敏, 王瑶, 周伟, 等. 药用植物萜类化合物的生物合成与代谢调控研究进展 [J]. 中国科学:生命科学, 2018, 48(4):352−364.SHI M, WANG Y, ZHOU W, et al. Research progress in terms of the biosynthesis and regulation of terpenoids from medicinal plants [J]. <italic>Scientia Sinica(Vitae)</italic>, 2018, 48(4): 352−364.(in Chinese) [39] 苏文炳, 蒋园园, 白昀鹭, 等. 转录因子调控植物萜类化合物生物合成研究进展 [J]. 农业生物技术学报, 2019, 27(5):919−926.SU W B, JIANG Y Y, BAI Y L, et al. Advances in transcription factors regulation on plant terpene biosynthesis [J]. <italic>Journal of Agricultural Biotechnology</italic>, 2019, 27(5): 919−926.(in Chinese) [40] 金祖汉, 金捷, 毛培江, 等. 角鲨烯对四氯化碳急性肝损伤模型小鼠的抗氧化和护肝作用研究 [J]. 浙江中医药大学学报, 2015, 39(9):666−670.JIN Z H, JIN J, MAO P J, et al. Study of the antioxidative and hepatoprotective effects of squalene on acute liver injury mice induced by CCl<sub>4</sub> [J]. <italic>Journal of Zhejiang Chinese Medical University</italic>, 2015, 39(9): 666−670.(in Chinese) [41] 缪云萍, 陈爱瑛, 夏志国, 等. 角鲨烯对小鼠急性酒精性肝损伤的保护作用 [J]. 食品工业科技, 2015, 36(16):364−365, 377.MIAO Y P, CHEN A Y, XIA Z G, et al. Protective effects of squalene on acute alcohol-induced liver injury in mice [J]. <italic>Science and Technology of Food Industry</italic>, 2015, 36(16): 364−365, 377.(in Chinese) [42] KATSELOU M G, MATRALIS A N, KOUROUNAKIS A P. Developing potential agents against atherosclerosis: Design, synthesis and pharmacological evaluation of novel dual inhibitors of oxidative stress and Squalene Synthase activity [J]. <italic>European Journal of Medicinal Chemistry</italic>, 2017, 138: 748−760. doi: 10.1016/j.ejmech.2017.06.042