Crop-yields of Maize and Legume under Intercropping Cultivation
-
摘要:
目的 明确在间作条件下不同互作因子(地上部互作、根系竞争、土壤环境改良)对不同复合群体的生态效应。 方法 以玉米/大豆和玉米/花生间作组合为研究对象,设置了间作无隔、间作网隔、间作全隔和3种作物的单作处理,比较分析不同间作处理的种间竞争关系和互作因子的产量贡献率。 结果 玉米/大豆和玉米/花生间作均能提高群体产量,其中玉米增产起到主要作用,不同作物的竞争力排序为玉米>大豆>花生;地上部互作效应主要体现在提高了两种间作组合中玉米的产量,其产量贡献率分别为15.83%(玉米/大豆)和15.98%(玉米/花生),但却显著抑制了花生的产量(−11.42%);根系竞争对玉米/大豆间作组合的单一作物和群体产量均起到负效应(玉米−2.87%、大豆−5.35%、群体−4.52%),而对玉米/花生间作组合的玉米和群体产量起到正效应(5.88%和0.80%);土壤环境改良对两种间作组合中各作物产量均表现出正效应,可显著提高间作系统的产量和稳定性。 结论 不同间作组合之间,由于作物在形态和生理上的差异,各互作因子对间作群体产量的贡献率存在差异,其中土壤环境改良对玉米/豆科间作系统的增产及稳产起到主要作用。通过量化不同互作因子对间作作物产量形成的生态效应,可为优化间作的田间作物配置和管理提供依据。 Abstract:Objective To clarify the effects of different interaction factors (aboveground interaction, root competition, soil environment improvement) on crop-yields under maize and legumes intercropping systems. Method Maize/soybean and maize/peanut were intercropped with no separation, with a net-barrier or with a physical barrier to completely separate the involved maize and legume plants. In addition, maize, soybean, and peanut were also planted as monocrop at the testing fields for comparison. Interspecies competition or synergy, such as the aboveground plant interactions and underground root competition, and soil improvements induced by the treatments on crop-yields of the two systems were analyzed. Result Intercropping maize and legume plants increased the combined crop-yield over the monocropping, despite the treatment differences. In an intercropping system, maize was most competitive of the 3 crops with respect to the aboveground growth, while peanut the least. The maize yield under the maize/soybean system increased with a contribution rate of 15.83% by the aboveground interactions, and 15.98% under the maize/peanut cultivation. The peanut yield, meanwhile, was suppressed by 11.42% when intercropped with maize. In contrast to the aboveground plant interactions, the root competition exerted negative effects on the yields of both species under the maize/soybean system that resulted in a reduction of 2.87% on maize, 5.35% on soybean, and 4.52% on total yield. For the intercropped maize and peanut plants, the root competition raised the maize yield by 5.88% and 0.8% on the combined yield. The intercropping improved soil conditions that facilitated crop-yield and production stability in both systems. Conclusion The morphology and physiology of the maize, soybean, and peanut plants appeared to cause the variations on the effects on crop-yield by the intercropping. Meanwhile, the soil eco-system was improved by the practice contributing significantly to the yield and production stability. A quantified relationship between intercropping and crop-yield as illustrated by this study could be applied to optimize other agricultural planning and management as well. -
Key words:
- maize /
- soybean /
- peanut /
- intercropping /
- interspecific competition /
- yield contribution rate
-
表 1 不同处理下两种间作组合的作物产量和土地当量比(LER)
Table 1. Crop-yields and LER of two intercropping systems with varied treatments
处理
Treatments玉米/大豆间作产量
Maize/soybean intercropping yield/(kg·hm−2)玉米/花生间作产量
Maize/peanut intercropping yield/(kg·hm−2)Y1m Y1s LER1 Y2m Y2p LER2 NS 3 066.45±119.73 a 1 156.05±48.98 ab 1.10±0.06 ab 3 460.50±79.35 a 1 764.60±47.52 a 1.12±0.03 a HS 3 141.15±138.66 a 1 214.40±27.63 a 1.15±0.03 a 3 311.40±99.47 a 1 795.35±31.69 a 1.11±0.01 a CS 3 012.39±174.32 a 1 091.55±20.41 b 1.05±0.03 b 2 939.70±54 .00 b 1 571.70±49.62 b 0.98±0.02 b MS 7 802.10±229.85 1 635.00±42.38 7 604.10±342.91 2 661.30±50.70 注:(1)NS表示无隔处理,HS表示网隔处理,CS表示全隔处理,MS表示单作处理;Y1m、Y1s、LER1分别表示玉米/大豆间作组合中的玉米产量、大豆产量、土地当量比;Y2m、Y2p、LER2分别表示玉米/花生间作组合中的玉米产量、花生产量、土地当量比;(2)表中数值之后无相同小写字母者表示差异达显著水平(LSD test, P<0.05, n=3)(表2~5同)。
Note: NS: non-separated treatment; HS: net-separated treatment; CS: completely separated treatment; MS: monoculture treatment. Y1m, Y1s and LER1 respectively represent maize yield, soybean yield and land equivalent ratio in maize/soybean intercropping. Y2m, Y2s and LER2 respectively represent maize yield, soybean yield and land equivalent ratio in maize/peanut intercropping. Different letters show significant differences determinedby the LSD(least significant difference)test(P<0.05, n=3)(the same as table 2-5).表 2 不同处理下两种间作组合的区域时间等价率(ATER)和农田利用效率(LUE)
Table 2. ATER and LUE of two intercropping systems with varied treatments
处理
Treatments玉米/大豆
Maize/soybean intercropping玉米/花生
Maize/peanut intercroppingATER1 LUE1 ATER2 LUE2 NS 1.01±0.05 ab 1.06±0.06 ab 1.02±0.02 a 1.07±0.02 a HS 1.06±0.02 a 1.10±0.03 a 1.02±0.01 a 1.06±0.01 a CS 0.97±0.03 b 1.01±0.03 b 0.89±0.03 b 0.94±0.03 b 表 3 不同处理下两种间作组合的相对拥挤系数(RCC)
Table 3. RCC of two intercropping systems with varied treatments
处理
Treatments玉米/大豆
Maize/soybean intercropping玉米/花生
Maize/peanut intercroppingRCC1m RCC1s RCC1 RCC2m RCC2p RCC2 NS 1.30±0.04 a 1.21±0.11 b 1.57±0.12 b 1.67±0.07 a 0.99±0.08 a 1.69±0.19 a HS 1.35±0.04 a 1.44±0.02 a 1.95±0.03 a 1.54±0.09 a 1.04±0.06 a 1.58±0.05 a CS 1.26±0.06 a 1.00±0.02 c 1.26±0.03 c 1.26±0.04 b 0.72±0.06 b 0.91±0.10 b 表 4 不同处理下两种间作组合的种间竞争力(A)
Table 4. Competitiveness(A)of two intercropping systems with varied treatments
处理
Treatments玉米/大豆
Maize/soybean intercropping玉米/花生
Maize/peanut intercroppingA1m A1s A2m A2p NS 0.12±0.04 ab −0.12±0.04 ab 0.37±0.02 a −0.37±0.02 b HS 0.09±0.03 b −0.09±0.03 b 0.29±0.05 b −0.29±0.05 a CS 0.16±0.03 a −0.16±0.03 a 0.31±0.02 b −0.31±0.02 a 表 5 不同处理下两种间作组合的实际产量损失指数(AYL)和系统生产力指数(SPI)
Table 5. AYL and SPI of two intercropping systems with varied treatments
处理
Treatments玉米/大豆
Maize/soybean intercropping玉米/花生
Maize/peanut intercroppingAYL1m AYL1s AYL1 SPI1 AYL2m AYL2p AYL2 SPI2 NS 0.18±0.02 a 0.06±0.03 b 0.24±0.03 b 575.91 0.37±0.03 a −0.01±0.03 a 0.36±0.05 a 566.81 HS 0.21±0.02 a 0.11±0.00 a 0.32±0.02 a 599.62 0.31±0.04 a 0.01±0.02 a 0.32±0.03 a 562.74 CS 0.16±0.03 a 0.00±0.01 c 0.16±0.03 c 551.55 0.16±0.02 b −0.11±0.03 b 0.05±0.05 b 495.37 表 6 不同互作因子对两间作组合的产量贡献率(YCR)
Table 6. Yield contribution rates(YCR)by various interacting factors on two intercropping systems
影响因子
Treatments玉米/大豆间作
Maize/soybean intercropping/%玉米/花生间作
Maize/peanut intercropping/%YCR1m YCR1s YCR1 YCR2m YCR2p YCR2 土壤环境改良
Improvement of soil environment4.96 11.27 9.17 14.66 12.61 13.29 根系竞争
Root competition−2.87 −5.35 −4.52 5.88 −1.74 0.80 地上部互作
Aboveground interaction15.83 0.13 5.36 15.98 −11.42 −2.28 综合作用
Comprehensive effect17.92 6.05 10.01 36.52 −0.55 11.81 -
[1] MARIOTTI M, MASONI A, ERCOLI L, et al. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system [J]. <italic>Grass and Forage Science</italic>, 2009, 64(4): 401−412. doi: 10.1111/j.1365-2494.2009.00705.x [2] TILMAN D. Plant interactions. (book reviews: plant strategies and the dynamics and structure of plant communities) [J]. <italic>Science</italic>, 1988, 241: 853−855. doi: 10.1126/science.241.4867.853 [3] WU Y S, GONG W Z, YANG F, et al. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping [J]. <italic>Plant Production Science</italic>, 2016, 19(2): 206−214. doi: 10.1080/1343943X.2015.1128095 [4] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems [J]. <italic>Field Crops Research</italic>, 2017, 203: 16−23. doi: 10.1016/j.fcr.2016.12.007 [5] 安颖蔚, 冯良山, 张鹏. 间作群体作物根系营养竞争与互作效应 [J]. 江苏农业科学, 2017, 45(5):26−28.AN Y W, FENG L S, ZHANG P. Nutrient competition and interaction effect of root in intercropping system [J]. <italic>Jiangsu Agricultural Sciences</italic>, 2017, 45(5): 26−28.(in Chinese) [6] XIA H Y, ZHAO J H, SUN J H, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates [J]. <italic>Field Crops Research</italic>, 2013, 150: 52−62. doi: 10.1016/j.fcr.2013.05.027 [7] KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil. Review [J]. <italic>Journal of Plant Nutrition and Soil Science</italic>, 2000, 163(4): 421−431. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R [8] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. <italic>Plant and Soil</italic>, 2009, 321(1/2): 5−33. [9] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. <italic>Nature Reviews Microbiology</italic>, 2013, 11(11): 789−799. doi: 10.1038/nrmicro3109 [10] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. <italic>Nature Microbiology</italic>, 2018, 3(4): 470−480. doi: 10.1038/s41564-018-0129-3 [11] LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems [J]. <italic>International Journal of Molecular Sciences</italic>, 2018, 19(2): 622. doi: 10.3390/ijms19020622 [12] LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture [J]. <italic>The New Phytologist</italic>, 2014, 203(1): 63−69. doi: 10.1111/nph.12778 [13] ZHENG X Y, ZHAO L, NAN X U, et al. Interspecific Interaction of Below-ground and Above-ground Indices in Mulberry-soybean Intercropping System [J]. <italic>Soils</italic>, 2011, 43(3): 493−497. [14] 刘广才, 杨祁峰, 李隆, 等. 小麦/玉米间作优势及地上部与地下部因素的相对贡献 [J]. 植物生态学报, 2008, 32(2):477−484. doi: 10.3773/j.issn.1005-264x.2008.02.027LIU G C, YANG Q F, LI L, et al. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping [J]. <italic>Journal of Plant Ecology (Chinese Version)</italic>, 2008, 32(2): 477−484.(in Chinese) doi: 10.3773/j.issn.1005-264x.2008.02.027 [15] 吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响 [J]. 农业机械学报, 2014, 45(1):129−136, 142. doi: 10.6041/j.issn.1000-1298.2014.01.021LÜ Y, WU P T, CHEN X L, et al. Effect of above-and below-ground interactions on maize/soybean intercropping advantage [J]. <italic>Transactions of the Chinese Society for Agricultural Machinery</italic>, 2014, 45(1): 129−136, 142.(in Chinese) doi: 10.6041/j.issn.1000-1298.2014.01.021 [16] 张向前, 黄国勤, 卞新民, 等. 红壤旱地玉米对间作大豆和花生边行效应影响的研究 [J]. 中国生态农业学报, 2012, 20(8):1010−1017. doi: 10.3724/SP.J.1011.2012.01010ZHANG X Q, HUANG G Q, BIAN X M, et al. Marginal effect of soybean and peanut intercropped with maize in upland red soils [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(8): 1010−1017.(in Chinese) doi: 10.3724/SP.J.1011.2012.01010 [17] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping [J]. <italic>Experimental Agriculture</italic>, 1980, 16(3): 217−228. doi: 10.1017/S0014479700010978 [18] ALLEN J R, OBURA R K. Yield of corn, cowpea, and soybean under different intercropping Systems1 [J]. <italic>Agronomy Journal</italic>, 1983, 75(6): 1005−1009. doi: 10.2134/agronj1983.00021962007500060032x [19] HIEBSCH C K, MCCOLLUM R E. Area-Time Equivalency Ratio: A Method For Evaluating The Productivity Of Intercrops 1 [J]. <italic>Agronomy Journal</italic>, 1987, 79(1): 15−22. doi: 10.2134/agronj1987.00021962007900010004x [20] LITHOURGIDIS A S, VLACHOSTERGIOS D N, DORDAS C, et al. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems [J]. <italic>European Journal of Agronomy</italic>, 2011, 34(4): 287−294. doi: 10.1016/j.eja.2011.02.007 [21] DHIMA K, LITHOURGIDIS A S, VASILAKOGLOU I, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio [J]. <italic>Field Crops Research</italic>, 2007, 100(2): 249−256. [22] XUE Y F, XIA H Y, CHRISTIE P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review [J]. <italic>Annals of Botany</italic>, 2016, 117(3): 363−377. doi: 10.1093/aob/mcv182 [23] 吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争 [J]. 应用生态学报, 2014, 25(1):139−146.LÜ Y, WU P T, CHEN X L, et al. Resource competition in maize/soybean intercropping system [J]. <italic>Chinese Journal of Applied Ecology</italic>, 2014, 25(1): 139−146.(in Chinese) [24] 陈伟, 薛立. 根系间的相互作用: 竞争与互利 [J]. 生态学报, 2004, 24(6):1243−1251. doi: 10.3321/j.issn:1000-0933.2004.06.023CHEN W, XUE L. Root interactions: competition and facilitation [J]. <italic>Acta Ecologica Sinica</italic>, 2004, 24(6): 1243−1251.(in Chinese) doi: 10.3321/j.issn:1000-0933.2004.06.023 [25] LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping - I. Yield advantage and interspecific interactions on nutrients [J]. <italic>Field Crops Research</italic>, 2001, 71(2): 123−137. doi: 10.1016/S0378-4290(01)00156-3 [26] LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping Ⅱ. Recovery or compensation of maize and soybean after wheat harvesting [J]. <italic>Field Crops Research</italic>, 2001, 71(3): 173−181. doi: 10.1016/S0378-4290(01)00157-5 [27] YANG W T, WANG X W, WANG J W, et al. Crop-and soil nitrogen in legume-Gramineae intercropping system: Research progress [J]. <italic>Chinese Journal of Ecology</italic>, 2013, 32(9): 2480−2484. [28] TIAN X L, WANG C B, BAO X G, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. <italic>Plant and Soil</italic>, 2019, 436(1/2): 173−192. [29] 林文雄, 陈婷, 周明明. 农业生态学的新视野 [J]. 中国生态农业学报, 2012, 20(3):253−264. doi: 10.3724/SP.J.1011.2012.00253LIN W X, CHEN T, ZHOU M M. New dimensions in agroecology [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(3): 253−264.(in Chinese) doi: 10.3724/SP.J.1011.2012.00253 [30] EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass [J]. <italic>Scientific Reports</italic>, 2017, 7: 44641. doi: 10.1038/srep44641 [31] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition [J]. <italic>Field Crops Research</italic>, 2017, 201: 41−51. doi: 10.1016/j.fcr.2016.10.021 [32] WANG Y F, QIN Y Z, CHAI Q, et al. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities [J]. <italic>Frontiers in Plant Science</italic>, 2018, 9: 483. doi: 10.3389/fpls.2018.00483 [33] LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/ peanut intercropping [J]. <italic>Journal of Integrative Agriculture</italic>, 2016, 15(1): 101−110. doi: 10.1016/S2095-3119(15)61089-9 [34] 杨小琴, 王洋, 齐晓宁, 等. 玉米间作体系的光合生理生态特征 [J]. 土壤与作物, 2019, 8(1):70−77. doi: 10.11689/j.issn.2095-2961.2019.01.008YANG X Q, WANG Y, QI X N, et al. Photosynthetic physio-ecological characteristics of maize intercropping system [J]. <italic>Soil and Crop</italic>, 2019, 8(1): 70−77.(in Chinese) doi: 10.11689/j.issn.2095-2961.2019.01.008