A New Blast-resistant Long-grain Hybrid Restorer Rice Line, Fuhui 7076
-
摘要:
目的 福建稻区稻瘟病多发,快速高效培育稻瘟病抗性较强的新品系,使其适应不断发生变异的稻瘟病菌生理小种,从而保持水稻主栽品种的抗瘟性,可为高效培育新品种奠定基础。 方法 于2008年,对农艺性状优良但抗稻瘟病性较弱的强恢复系(航2号)进行EMS(ems mutagenesis,甲基磺酸乙酯)化学诱变,经过多年多点不同生态区的定向培育,并结合抗瘟性鉴定,筛选具有目标性状的新恢复系。 结果 于2012年选育出籼型恢复系福恢7076。福恢7076既保持了航2号广亲和性、强恢复力、高配合力的优良特点,同时在品质和产量等方面均较航2号有所改善,稻瘟病抗性表现为中抗 (MR)。用福恢7076与赣香A配组的杂交水稻新组合赣优7076,参加2015–2016年云南省杂交籼稻品种试验,两年平均产量为10 711.5 kg·hm−2,比对照品种F优498增产3.24%,增产点率68.42%,2017年通过云南省农作物品种审定委员会审定(滇审稻2017009)。 结论 对农艺性状优良但抗稻瘟病性较弱的强恢复系(航2号)进行EMS化学诱变后,经过多年多点不同生态区的定向培育,再通过在稻瘟病多发稻区的筛选,加速了自然选择的过程,相比于长期的自然选择,可以更快地获得即具备亲本优良性状又具备稻瘟病抗性的新恢复系。 Abstract:Objectives A new blast-resistant lines of rice suitable for cultivation in Fujian province was generated with an efficient breeding method. Methods Applying the EMS chemical mutagenesis, Hang 2 with excellent agronomic traits except blast-resistance was selected to breed a hybrid restorer line through directional cultivations in areas with varied ecological conditions. Disease-resistance of the lines was verified to finalize the process and hybrid selection. Results The hybrid Indica restorer line, Fuhui 7076, not only inherited the desirable agronomic traits of Hang 2, such as wide compatibility, strong resilience, and high combining ability, but also performed superior on the quality and yield as well as an MR (medium resistance) rating on blast. Utilizing Fuhui 7076 to cross with Ganxiang A, Ganyou 7076 gave a 2-year average yield of 10,711.5 kg/hectare at the 2015 and 2016 Yunnan Provincial Indica Hybrid Rice Trials. The yield was 3.24%, and the rate of increase 68.42%, higher than control, F You 498. In 2017 , Ganyou 7076 was certified by the Crop Certification Committee of Yunnan Province (Certificate No. 2017009). Conclusions With the EMS chemical mutagenesis, the agronomically desirable Hang 2 was bred to be blast-resistant. Through years of continued directional selection in blast-prone rice farming regions of varied ecosystems, the time required for natural mutation process was significantly shortened in the breeding of the disease-resistant variety. -
Key words:
- Hybrid rice /
- restorer line /
- Fuhui 7076 /
- rice blast resistance /
- breeding
-
表 1 福恢7076和航2号的农艺性状及粒形比较
Table 1. Agronomic characteristics and grain shapes of Fuhui 7076 and Hang 2
供试材料
Variety株高
Plant
height/cm每丛有效
穗数
Panicle per cluster穗长
Panicle length/cm穗粒数Spikelet number per panicle 结实率 Spikelet fertility/% 千粒重
1 000-grain weight/g长宽比
Ratio between length and width of grain粒长
Grain lehgth/mm粒宽
Grain width/mm粒厚
Grain thickness/mm航2号 Hang 2 132.65 11.5 29.86 305 90.15 29.45 3.32 9.93 3.01 1.99 福恢7076 Fuhui 7076 137.22 11.2 31.22** 311 94.72** 32.17* 3.39 9.97 2.97 2.09** 注:*表示在0.05水平上差异显著,**表示在0.01水平上差异极显著。表2同。
Note: * significance at 0.05 level, ** at 0.01 level. The same as Table 2.表 2 福恢7076和航2号的米质比较
Table 2. Grain quality of Fuhui 7076 and Hang 2
供试材料
Variety糙米率
Brown rice rate/%精米率
Milled rice rate/%整精米率
Full milled rice rate/%长度
Grain length/mm垩白粒率
Chalkness rate/%垩白度
Chalkness degree/%透明度
Transparency糊化温度
Pasting temperature/℃直链淀粉
Gel consistency/%航2号 Hang 2 79.7 72.0 65.7 6.5 41.0 9.2 2 6.1 13.7 福恢7076 Fuhui 7076 77.1* 71.5 62.7* 6.8 16.0** 4.2** 2 6.4 14.1 表 3 4个品种的粒型统计
Table 3. Grain shapes of 4 rice varieties
供试材料
Variety千粒重
1 000-grain weight/g长宽比
Ration between length and width of grain粒长
Length of grain/mm粒宽
Width of grain/mm粒厚
Thickness of grain/mm航2号 Hang 2 29.45 3.32 9.93 3.01 1.99 福恢7076 Fuhui 7076 32.17 3.39 9.97 2.97 2.09 赣优7076 Ganyou 7076 27.11 3.67 9.93 2.73 2.05 赣香A Ganxiang A 24.04 3.61 9.44 2.64 1.94 表 4 4个品种粒长基因的变异位点检测
Table 4. Sequences of genotype related to grain length of 4 rice varieties
供试材料
VarietyGS3
(C/A)GL3-1/qGL3
(1092C/A)TGW6
(313G/-)航2号 Hang 2 A C G 福恢7076 Fuhui 7076 A C G 赣优7076 Ganyou 7076 A C G 赣香A Ganxiang A A C - 表 5 福恢7076和航2号对稻瘟病菌的抗性鉴定
Table 5. Blast-resistance of Fuhui 7076 and Hang 2
供试材料
Variety叶瘟
Leaf blast穗瘟
Panicle blast苗瘟 Seedling blast 抗性评价
Evaluation of resistance混合接菌
Mixed inoculation菌株
Strain致病菌数
Number of Pathogenic isolates抗菌株率
Resistance frequency/%S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 航2号 Hang 2 MS MS S S S S S S S S S S S S R 11 8.33 MS 福恢7076 Fuhui 7076 MR MR S R R R R R R R S S S S MR 4 66.67 MR 注:苗瘟采用混合接种和分菌株接种鉴定;叶瘟和穗瘟为田间自然诱发鉴定(2019,上杭);R表示“抗”,MR表示“中抗”,MS表示“中感”,S表示“感”;S1~S12为菌株代号,依次分别为:JY18026、NH17026、SH18073、NH19003、JL18053、NH19007、NH18044、NH18046、SW18055、XI18034、JL19019、JY18007;混合接菌为上述所有菌株混合后接菌。
Note: Blast-resistance of seedlings was determined by mixed and individual strain inoculations; those of leaves and panicles by natural induction in field at Shanghang in 2019; R: resistance; MR: moderate resistance; MS: moderate susceptible; S: susceptible; S1 to S12: codes for strain JY18026, NH17026, SH18073, NH19003, JL18053, NH19007, NH18044, NH18046, SW18055, XI18034, JL19019, and JY18007, respectively; mixed-strain inoculation used all strains of S1 to S12. -
[1] 黄庭旭, 徐倩华. 水稻高产栽培实用技术[M]. 福州: 福建科学技术出版社: 2009. [2] 潘学贤, 程开禄, 黄富, 等. 水稻品种抗稻瘟病性丧失规律 [J]. 云南农业大学学报, 2004, 19(5):536−540.PAN X X, CHENG K L, HUANG F, et al. Law of resistance breakdown of rice varieties to rice blast [J]. <italic>Journal of Yunnan Agricultural University</italic>, 2004, 19(5): 536−540.(in Chinese) [3] 王丰, 柳武革, 刘振荣, 等. 利用分子标记辅助选择聚合<italic>Pi-1</italic>和<italic>fgr</italic>基因改良水稻恢复系 [J]. 杂交水稻, 2010, 25(S1):237−244.WANG F, LIU W G, LIU Z R, et al. Pyramiding <italic>pi-1</italic> and <italic>fgr</italic> genes to improve rice restorer lines by molecular marker-assisted selection [J]. <italic>Hybrid Rice</italic>, 2010, 25(S1): 237−244.(in Chinese) [4] XING Y Z, ZHANG Q F. Genetic and molecular bases of rice yield [J]. <italic>Annual Review of Plant Biology</italic>, 2010, 61: 421−442. doi: 10.1146/annurev-arplant-042809-112209 [5] 袁隆平. 杂交水稻超高产育种 [J]. 杂交水稻, 1997, 12(6):1−6.YUAN L P. Super high yield breeding of hybrid rice [J]. <italic>Hybrid Rice</italic>, 1997, 12(6): 1−6.(in Chinese) [6] 谢华安. 华南型超级稻育种及其技术研究进展 [J]. 沈阳农业大学学报, 2007, 38(5):714−718. doi: 10.3969/j.issn.1000-1700.2007.05.012XIE H A. Advances on the breeding program and technology research in South China type super-rice [J]. <italic>Journal of Shenyang Agricultural University</italic>, 2007, 38(5): 714−718.(in Chinese) doi: 10.3969/j.issn.1000-1700.2007.05.012 [7] 任光俊, 颜龙安, 谢华安. 三系杂交水稻育种研究的回顾与展望 [J]. 科学通报, 2016, 61(35):3748−3760. doi: 10.1360/N972016-01109REN G J, YAN L, XIE H A. Retrospective and perspective on indica three-line hybrid rice breeding research in China [J]. <italic>Chinese Science Bulletin</italic>, 2016, 61(35): 3748−3760.(in Chinese) doi: 10.1360/N972016-01109 [8] 冯代贵, 彭国亮, 罗庆明, 等. 水稻品种抗病性变化与稻瘟病菌致病性变异的相关效应研究 [J]. 植物病理学报, 1995, 25(2):184.FENG D G, PENG G L, LUO Q M, et al. The relationship between resistance variations of rice varieties and pathogenicity variations of rice blast fungus [J]. <italic>Acta Phytopathologica Sinica</italic>, 1995, 25(2): 184.(in Chinese) [9] 吴俊, 刘雄伦, 戴良英, 等. 水稻广谱抗稻瘟病基因研究进展 [J]. 生命科学, 2007, 19(2):233−238. doi: 10.3969/j.issn.1004-0374.2007.02.025WU J, LIU X L, DAI L Y, et al. Advances on the identification and characterization of broad- spectrum blast resistance genes in rice [J]. <italic>Chinese Bulletin of Life Sciences</italic>, 2007, 19(2): 233−238.(in Chinese) doi: 10.3969/j.issn.1004-0374.2007.02.025 [10] 杨勤忠, 林菲, 冯淑杰, 等. 水稻稻瘟病抗性基因的分子定位及克隆研究进展 [J]. 中国农业科学, 2009, 42(5):1601−1615. doi: 10.3864/j.issn.0578-1752.2009.05.013YANG Q Z, LIN F, FENG S J, et al. Recent progress on molecular mapping and cloning of blast resistance genes in rice (<italic>Oryza sativa</italic> L.) [J]. <italic>Scientia Agricultura Sinica</italic>, 2009, 42(5): 1601−1615.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.05.013 [11] 吴孝波, 冯慧, 黄强, 等. 利用辐射诱变技术创制抗稻瘟病紫叶两系水稻新材料 [J]. 四川农业科技, 2018(8):47−49. doi: 10.3969/j.issn.1004-1028.2018.08.020WU X B, FENG H, HUANG Q, et al. A new blast resistant two lines of purple rice material developed by radiation mutagenesis [J]. <italic>Sichuan Agricultural Science and Technology</italic>, 2018(8): 47−49.(in Chinese) doi: 10.3969/j.issn.1004-1028.2018.08.020 [12] 徐鹏, 王宏, 涂燃冉, 等. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性 [J]. 中国水稻科学, 2019, 33(4):313−322.XU P, WANG H, TU R R, et al. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system [J]. <italic>Chinese Journal of Rice Science</italic>, 2019, 33(4): 313−322.(in Chinese) [13] 王平, 向跃武, 张志勇, 等. 抗稻瘟病多基因聚合对川恢907田间抗性的影响 [J]. 西南农业学报, 2012, 25(3):898−901. doi: 10.3969/j.issn.1001-4829.2012.03.031WANG P, XANG Y W, ZHANG Z Y, et al. Effects of gene pyramiding on rice blast resistance of Chuanhui 907 [J]. <italic>Southwest China Journal of Agricultural Sciences</italic>, 2012, 25(3): 898−901.(in Chinese) doi: 10.3969/j.issn.1001-4829.2012.03.031 [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 稻瘟病测报调查规范: GB/T 15790—2009[S]. 北京: 中国标准出版社, 2010. [15] 梁曼玲. 水稻抗稻瘟病的遗传与育种研究进展 [J]. 中国农学通报, 2005, 21(7):341−345. doi: 10.3969/j.issn.1000-6850.2005.07.102LIANG M L. Review of researches on inheritance and breeding of blast resistance in rice [J]. <italic>Chinese Agricultural Science Bulletin</italic>, 2005, 21(7): 341−345.(in Chinese) doi: 10.3969/j.issn.1000-6850.2005.07.102 [16] 赵夏夏, 王旭明, 许飘, 等. 水稻稻瘟病抗性研究与展望 [J]. 湖北农业科学, 2019, 58(11):5−9.ZHAO X X, WANG X M, XU P, et al. Research and prospect of rice blast resistance [J]. <italic>Hubei Agricultural Sciences</italic>, 2019, 58(11): 5−9.(in Chinese)