Growth and Development of Leptocybe invasa as Affected by Environmental Temperature
-
摘要:
目的 致瘿性昆虫—桉树枝瘿姬小蜂(Leptocybe invasa)的生长发育、繁殖及分布主要受到温度的影响,而探明温度对桉树枝瘿姬小蜂生长发育的影响,可为该害虫的虫情监测和预测预报提供科学依据。 方法 采用室内恒温接种、饲养的方法,测定了桉树枝瘿姬小蜂在19、22、25、28、31℃下各虫态的发育历期和发育速率,利用直线回归(图测法)、线性回归和 Logistic 回归方程分析了温度与各虫态发育速率的关系,并用直线回归方程求得各虫态发育起点温度和有效积温。 结果 温度对桉树枝瘿姬小蜂卵至蛹各虫态、全世代的发育历期及成虫寿命均有显著影响,在19~31℃范围内,各虫态发育历期均随温度升高而逐渐缩短,发育速率与温度呈显著正相关。图测法直线回归方程更能准确拟合桉树枝瘿姬小蜂各虫态发育速率与温度之间的关系。桉树枝瘿姬小蜂卵、幼虫、蛹、成虫(存活)及全世代的发育起点温度分别为10.78、10.29、14.64、14.73和12.68℃,有效积温分别为86.96、588.24、92.59、104.17和712.34 d·℃,发育最适温度分别为25.68、25.65、24.58、26.42和23.84℃,发育适宜温区为12.21~35.48℃。2017—2019年,该害虫在江西赣南发生世代数理论值为4.27代,与实际观察结果一致。 结论 温度是影响桉树枝瘿姬小蜂生长发育的重要因素,本研究结果可为预测该蜂的发育历期、发生区域、发生期和发生代数提供科学依据和技术支撑,尤其对该蜂成虫发生期预测预报和有效防控具有重要的指导意义。 Abstract:Objective Correlations between the growth, reproduction, and distribution of Leptocybe invasa, an insect that causes galls in plants, and the surrounding temperature were studied to facilitate the monitoring and controlling the spread of the pest wasp. Method Duration and speed of each development state of the wasp were measured by inoculating and feeding the larvae indoor at 19, 22, 25, 28 and 31℃. Graphic, linear, and logistic regression analyses were applied to establish the correlations. Threshold and effective temperatures for the emergences of various stages of the insect were obtained using a linear regression model. Result Temperature was found to significantly affect not only at the stage from egg to pupa, but also the entire development and adult life of the insect. The increasing temperature hastened the insect development process. The graphic linear regression model seemed to more accurately describe their correlation than the other models. In Gannan, Jiangxi, the threshold emergence temperature of the eggs was found to be 10.78℃; that of the larva, 10.29℃; that of the pupa, 14.64℃; the adult survival threshold temperature, 14.73℃; and, the temperature for the development of an entire generation, 12.68℃. The accumulated effective temperature for the eggs was found to be 86.96℃; that for the larva, 588.24℃; that for the pupa, 92.59℃; that for the adult survival, 104.17℃; and, that for the development of an entire generation, 712.34 d·℃. And, the optimum temperature for the egg development, 25.68℃; for the larvae, 25.65℃; for the pupa, 24.58℃; for the adult survival, 26.42℃; and, for the development of an entire generation, 23.84℃ with a range between 12.21℃ and 35.48℃. The model estimated 4.27 generations of L. invasa had taken place between 2017 and 2019 which was in agreement with what was observed in the field. Conclusion Temperature was critical for the development of L. invasa. Understanding the correlation would aid in predicting the development, infestation time and area, and emerging generations of L. invasa for effective control of the pest. -
表 1 不同温度下桉树枝瘿姬小蜂各虫态的发育历期
Table 1. Durations of development stages of L. invasa under varied temperatures
虫态
Insect state发育历期 Developmental duration/d 19℃ 22℃ 25℃ 28℃ 31℃ 卵 Egg 10.33±1.56 aD 7.40±1.99 bD 6.33±1.73 cC 5.23±1.57 dC 4.33±1.24 eC 幼虫 Larva 66.13±4.58 aA 51.43±4.49 bA 43.27±4.65 cA 34.47±3.75 dA 28.17±3.21 eA 蛹 Pupa 19.63±2.41 aC 12.27±2.53 bC 9.37±1.77 cB 7.27±1.89 dB 5.40±1.30 eBC 产卵前期 Pre-oviposition 12.30±1.53 aD 5.13 ±2.34 bD 2.03 ±0.82 cD 1.05 ±0.52 dD 0.48 ±0.35 dD 成虫 Adult 23.97±3.23 aB 14.23±2.57 bB 10.33±1.63 cB 8.20±1.77 dB 6.27±1.57 eB 全世代 Generation 108.40±6.12 a 76.23±7.31 b 60.99±6.05 c 48.02±5.27 d 38.38±4.52 e 注:同行数据后不同小写字母表示同一阶段不同温度间差异显著,同列数据后不同大写字母表示同一温度不同世代间差异显著(SNK法, P<0.05);表中“成虫历期”指的是成虫寿命,世代历期=卵历期+幼虫历期+蛹历期+产卵前期,表2~4同。
Note: Different lowercase letters in the same row show significant difference, and different capital letters in the same column show significant difference(SNK, P<0.05);In the table, "adult duration" refers to adult life span;Generation duration = egg stage + larva stage + pupa stage + pre spawning stage. The same as Table 2–4.表 2 桉树枝瘿姬小蜂各虫态发育速率及成虫寿命与温度的关系模型
Table 2. Regression models on growth rate and adult lifespan of L. invasa as affected by temperature
虫态
Insect state图测法 Graph method 线性回归 Linear regression Logistic回归 Logistic regression 模型
Model决定系数(R2)
Determination coefficient模型
Model决定系数(R2)
Determination coefficient模型
Model决定系数(R2)
Determination coefficient卵 Egg v=0.011 5t−0.124 0.983 2 v=0.012 1t−0.128 0 0.488 9 v=0.366 4/(1+e3.554 7−0.138 4t) 0.487 7 幼虫 Larva v=0.001 7t−0.017 5 0.986 3 v=0.001 7t−0.018 5 0.833 6 v=0.154 8/(1+e3.834 6−0.149 5t) 0.843 8 蛹 Pupa v=0.010 8t−0.158 1 0.985 0 v=0.011 8t−0.176 7 0.682 5 v=0.461 2/(1+e4.659 8−0.189 6t) 0.688 7 产卵前期 Pre-oviposition v=0.273t-5.645 7 0.790 1 v=0.273t-5.645 7 0.349 4 v=0.898 6/(1+e2.709 5−0.109 3t) 0.497 3 成虫 Adult v=0.009 6t−0.141 4 0.994 7 v=0.010 4t−0.156 9 0.733 9 v=0.305 9/(1+e4.792 7−0.181 4t) 0.736 0 全世代 Generation v=0.001 4t−0.017 8 0.992 4 v=0.001 4t−0.017 8 0.898 1 v=0.684 8/(1+e3.145 1−0.131 9t) 0.901 1 表 3 赣南桉树枝瘿姬小蜂各虫态的发育适温区范围
Table 3. Temperature ranges for optimal development at various stages of L. invasa in southern Jiangxi
虫态
Insect stateLogistic模型参数
Parameters of logistic model最适温Tmid
Optimum temperature/℃适温下限Tmin
Lower limit of temperature/℃适温上限Tmax
Upper limit of temperature/℃a b 卵 Egg 3.554 7 0.138 4 25.68 13.58 37.79 幼虫 Larva 3.834 6 0.149 5 25.65 13.85 37.45 蛹 Pupa 4.659 8 0.189 6 24.58 14.05 35.11 产卵前期 Pre-spawn 2.709 5 0.109 3 24.79 12.25 37.33 成虫 Adult 4.792 7 0.181 4 26.42 15.23 37.61 全世代 Generation 3.145 1 0.131 9 23.84 12.21 35.48 表 4 桉树枝瘿姬小蜂发育历期预测值与观测值的相关性分析
Table 4. Predicted and observed durations of L. invasa development stages
虫态
Insect state观测值 Observed value/d 预测值 Predicted value/d 相关系数(r)
Correlation coefficientP值
P Value19℃ 22℃ 25℃ 28℃ 31℃ 19℃ 22℃ 25℃ 28℃ 31℃ 卵 Egg 10.33 7.40 6.33 5.23 4.13 10.58 7.75 6.12 5.05 4.30 0.995 8 0.000 3 幼虫 Larva 66.13 51.43 43.27 34.47 28.17 67.57 50.25 40.00 33.22 28.41 0.994 3 0.000 5 蛹 Pupa 19.63 12.27 9.37 7.27 5.40 21.23 12.58 8.94 6.93 5.66 0.997 4 0.000 2 全世代 Generation 108.40 76.25 60.99 48.02 38.38 113.64 76.92 58.14 46.73 39.06 0.997 5 0.000 2 表 5 桉树枝瘿姬小蜂的LDT和SET (文献资料[10-13]及本试验)
Table 5. LDT and SET of L. invasa (data from literatures and this experiment)
地点
Position起点温度 LDT/℃ 有效积温 SET/(d·℃) 食料、温度
Food, Temperature卵
Egg幼虫
Larva蛹
Pupa成虫
Adult卵
Egg幼虫
Larva蛹
Pupa成虫
Adult福建福州
Fuzhou, Fujian 26.09°N8.65 6.57 13.94 14.83 101.80 807.16 105.43 114.53 巨桉8号, 21~36℃, 6个恒温[13]
E. grandis, 21~36℃, 6 constant temperatures江西赣州
Ganzhou, Jiangxi 25.85°N10.78 10.29 14.64 14.73 86.96 588.24 92.59 104.17 DH201-2, 19~31℃, 5个恒温(本研究结果)
DH201-2, 19~31℃, 5 constant temperatures [this experiment]广东广州
Guangzhou,Guangdong 23.08° N13.00 19.71 17.07 – 128.10 284.24 201.22 – 尾赤桉[12]
E. urophylla × E. camaldulensis广东广州
Guangzhou,Guangdong 23.08° N0.00 0.00 0.00 0.00 146.57 1228.01 161.67 205.17 DH201-2,室外,变温[11]
DH201-2, Outdoor, variable temperature广西南宁
Nanning, Guangxi 22.84°N10.25 10.79 749.43 53.42 20.5,27.5,28.6℃, 3个恒温[11]
20.5,27.5,28.6℃, 3 constant temperatures -
[1] Honěk A. Geographical variation in thermal requirements for insect development [J]. European Journal of Entomology, 1996, 93: 303−312. [2] JAROŠÍK V, HONĚK A, DIXON A F G. Developmental rate isomorphy in insects and mites [J]. The American Naturalist, 2002, 160(4): 497−510. doi: 10.1086/342077 [3] BARTEKOVÁ A, PRASLIČKA J. The effect of ambient temperature on the development of cotton bollworm (Helicoverpa armigera Hübner, 1808) [J]. Plant Protection Science, 2010, 42(No. 4): 135−138. [4] 陈元生, 罗致迪, 于海萍. 气象因子对赣南桉树枝瘿姬小蜂成虫发生量的影响 [J]. 中国植保导刊, 2016, 36(8):41−45. doi: 10.3969/j.issn.1672-6820.2016.08.008CHEN Y S, LUO Z D, YU H P. Effects of meteorological factors on adult population numbers of Leptocybe invasa in Southern Jiangxi Province [J]. China Plant Protection, 2016, 36(8): 41−45.(in Chinese) doi: 10.3969/j.issn.1672-6820.2016.08.008 [5] 徐家雄, 任辉, 赵丹阳, 等. 桉树枝瘿姬小蜂种群发生规律与空间分布格局研究 [J]. 广东林业科技, 2008, 24(6):50−57.XU J X, REN H, ZHAO D Y, et al. Study on the population regularity and spatial distribution pattern of Leptocybe invasa at Eucalyptus [J]. Guangdong Forestry Science and Technology, 2008, 24(6): 50−57.(in Chinese) [6] 陈元生, 涂小云, 罗益群. 赣南桉树枝瘿姬小蜂种群动态研究 [J]. 江苏农业科学, 2015, 43(11):178−180.CHEN Y S, TU X Y, LUO Y Q. Study on the population dynamics of Leptocybe invasa on Eucalyptus spp. in Southern Jiangxi [J]. Jiangsu Agricultural Sciences, 2015, 43(11): 178−180.(in Chinese) [7] 陈元生, 廖忠明, 涂小云. 赣南桉树品种(系)对桉树枝瘿姬小蜂的抗性研究 [J]. 北方园艺, 2015(11):106−109.CHEN Y S, LIAO Z M, TU X Y. Study on resistance of different Eucalyptus varieties to leptocybeinvasain southern Jiangxi [J]. Northern Horticulture, 2015(11): 106−109.(in Chinese) [8] 陈元生, 蔡润玉, 罗致迪, 等. 赣南桉树枝瘿姬小蜂种群物理监测技术研究 [J]. 现代农业科技, 2020(4):93−95, 97.CHEN Y S, CAI R Y, LUO Z D, et al. Study on population physical monitoring technology of Leptocybe invasa on Eucalyptus spp. in southern Jiangxi Province [J]. Modern Agricultural Science and Technology, 2020(4): 93−95, 97.(in Chinese) [9] 陈元生, 金志芳, 涂小云. 桉树枝瘿姬小蜂化学防治药剂的筛选 [J]. 河南农业科学, 2015, 44(4):106−109.CHEN Y S, JIN Z F, TU X Y. Screening of chemical pesticides for control of Leptocybe invasa [J]. Journal of Henan Agricultural Sciences, 2015, 44(4): 106−109.(in Chinese) [10] 吴耀军, 常明山, 李德伟, 等. 桉树枝瘿姬小蜂发育起点温度与有效积温的研究 [J]. 广东林业科技, 2013, 29(6):27−30.WU Y J, CHANG M S, LI D W, et al. Threshold and effective accumulative temperature for the development of Leptocybe invasa [J]. Guangdong Forestry Science and Technology, 2013, 29(6): 27−30.(in Chinese) [11] 邱焕秀, 徐家雄, 林明生. 桉树枝瘿姬小蜂生物学特性和有效积温研究 [J]. 广东林业科技, 2011, 27(4):1−5.QIU H X, XU J X, LIN M S. Study on the biology and effective accumulated temperature by Leptocybe invasa at Eucalyptus [J]. Guangdong Forestry Science and Technology, 2011, 27(4): 1−5.(in Chinese) [12] 朱方丽. 桉树枝瘿姬小蜂生物学及生态学研究[D]. 广州: 华南农业大学, 2012.ZHU F L. Study on biology and ecology of Leptocybe invasa at Eucalyptus[D]. Guangzhou: South China Agricultural University, 2012. (in Chinese) [13] 陈汉章, 林秀琴, 陈顺立, 等. 桉树枝瘿姬小蜂发育起点温度和有效积温的测定 [J]. 长江大学学报(自科版), 2013, 10(29):1−6, 10, 8.CHEN H Z, LIN X Q, CHEN S L, et al. Measurement and application of developmental threshold temperature and effective cumulative temperature of Leptocybe invasa fisher et La salle [J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(29): 1−6, 10, 8.(in Chinese) [14] 牟吉元. 昆虫生态与农业害虫预测预报[M]. 北京: 中国农业科技出版社, 1997: 134-136. [15] 袁盛勇, 孔琼, 肖春, 等. 桔小实蝇各虫态发育历期及有效积温研究 [J]. 西南农业大学学报(自然科学版), 2005, 27(3):316−318.YUAN S Y, KONG Q, XIAO C, et al. Developmental threshold temperature and effective cumutive temperature of Bactrocera dorsalis hendel [J]. Journal of Southwest Agricultural University, 2005, 27(3): 316−318.(in Chinese) [16] 陈元生, 罗致迪, 钟平华. 棉铃虫发育起点温度和有效积温的地理变异 [J]. 环境昆虫学报, 2017, 39(3):573−579.CHEN Y S, LUO Z D, ZHONG P H. Geographic variation indevelopment threshold temperature and sum of effective temperatures of the cotton bollworm, Helicoverpa armigera Hübner(Lepidoptera: Noctuidae) [J]. Journal of Environmental Entomology, 2017, 39(3): 573−579.(in Chinese) [17] 宋墩福, 陈元生, 涂小云. 花绒寄甲赣南种群发育起点温度与有效积温研究 [J]. 中国植保导刊, 2015, 35(6):58−60, 44. doi: 10.3969/j.issn.1672-6820.2015.06.015SONG D F, CHEN Y S, TU X Y. Study on development threshold and sum of effective temperatures of Dastarcus helophoroides Gannan population [J]. China Plant Protection, 2015, 35(6): 58−60, 44.(in Chinese) doi: 10.3969/j.issn.1672-6820.2015.06.015 [18] 潘雪红, 商显坤, 魏吉利, 等. 温度对蔗螟天敌等腹黑卵蜂生长发育的影响 [J]. 西南农业学报, 2019, 32(3):539−543.PAN X H, SHANG X K, WEI J L, et al. Effect of temperature on development of natural enemy Telenomus dignus [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 539−543.(in Chinese) [19] 岳健, 何嘉, 张蓉, 等. 多异瓢虫的发育与温度的关系 [J]. 昆虫知识, 2009, 46(4):605−609.YUE J, HE J, ZHANG R, et al. Relationship between the temperature and the development of Hippodamia variegata [J]. Chinese Bulletin of Entomology, 2009, 46(4): 605−609.(in Chinese) [20] 商显坤, 黄诚华, 魏吉利, 等. 温度对突背蔗犀金龟蛹发育速率的影响 [J]. 植物保护, 2017, 43(6):118−122. doi: 10.3969/j.issn.0529-1542.2017.06.019SHANG X K, HUANG C H, WEI J L, et al. Effects of temperature on the developmental rate of Alissonotum impressicolle pupae [J]. Plant Protection, 2017, 43(6): 118−122.(in Chinese) doi: 10.3969/j.issn.0529-1542.2017.06.019 [21] 汤行昊. 桉树枝瘿姬小蜂生物学、生态学特性及防治试验[D]. 福州: 福建农林大学, 2013.Tang X H. Study on Biology, Ecology and control of Leptocybe invasa Fisher&La salle[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese) [22] 时培建, 池本孝哉, 戈峰. 温度与昆虫生长发育关系模型的发展与应用 [J]. 应用昆虫学报, 2011, 48(5):1149−1160. doi: 10.7679/j.issn.2095-1353.2011.189SHI P J, IKEMOTO T K, GE F. Development and application of models for describing the effects of temperature on insects' growth and development [J]. Chinese Journal of Applied Entomology, 2011, 48(5): 1149−1160.(in Chinese) doi: 10.7679/j.issn.2095-1353.2011.189 [23] 何莉梅, 葛世帅, 陈玉超, 等. 草地贪夜蛾的发育起点温度、有效积温和发育历期预测模型 [J]. 植物保护, 2019, 45(5):18−26.HE L M, GE S S, CHEN Y C, et al. The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodoptera frugiperda [J]. Plant Protection, 2019, 45(5): 18−26.(in Chinese) [24] LAMB R J. Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects [J]. Environmental Entomology, 1992, 21(1): 10−19. doi: 10.1093/ee/21.1.10