Growth and Quality of Ganoderma lucidum at Tea Plantations under Relay Cropping
-
摘要:
目的 探讨茶园套种对灵芝生长和品质的影响,为茶园套种灵芝的生产模式应用提供科学依据。 方法 采用竖栽覆土和横栽覆土2种茶园套种灵芝仿野生栽培方式,分析比较2种茶园套种方式与常规室外荫棚覆土栽培方式之间灵芝的生长性能、商品性状及其品质的差异。 结果 茶园套种模式下,灵芝可以正常出芝并生长发育成熟,其商品性状正常,但生长性能和商品性状均不如室外荫棚覆土栽培。与室外荫棚覆土栽培相比,竖栽覆土和横栽覆土2种茶园套种下的灵芝菌棒下地后生长时间分别慢25 、18 d,出芝率分别显著降低12.8%和14.5%(P<0.05),生物转化率分别降低10.48%和4.49%(P>0.05)。茶园套种时灵芝的多糖、总三萜和氨基酸等含量与室外荫棚覆土栽培均无显著性差异;竖栽覆土和横栽覆土的灵芝多糖含量为1.09%和1.08%,比荫棚覆土栽培的灵芝高9.90%和9.29%,总三萜含量为1.19%和1.21%,比荫棚覆土栽培的灵芝高11.48%和13.55%。 结论 茶园生态环境条件下灵芝可以正常生长,茶园套种可提高灵芝的品质,但对生长性能和商品性状有一定的不利影响。 Abstract:Objective Growth and quality of Ganoderma lucidum cultivated at fields under varied relay cropping methods were evaluated for the planting practice at tea plantations. Method Under the vertical and horizontal cultivation modes of relay cropping, G. lucidum were grown to compare with the conventional greenhouse cultivation. The growth, commercial properties, and quality of the fungi were compared. Result Under the relay cropping, G. lucidum grew to maturity, released spores, and gave commercial appearance similarly to the greenhouse cultivation. However, compared to the conventional planting, the vertical relay cropping method required 25 d longer to reach maturation with a significantly reduced germination rate by 12.8% and the biotransformation rate by 10.48%; while the horizontal method caused a 18 d delay in maturation with significantly declined rates of germination by 14.5% and biotransformation by 4.49%. On the other hand, the contents of polysaccharides, total triterpenes, and amino acids in G. lucidum were with no significant difference with the greenhouse cultivation. The polysaccharide content of the vertical relay cropped G. lucidum was 1.09%, which was a 9.90% higher than that of control; and, that of the horizontal relay cropped G. lucidum was 1.08%, which was a 9.29% higher. The vertical relay cropping produced 1.19% triterpenes in the fruiting body, which was an increase of 11.48% over control; while the horizontal cultivation delivered 1.21% with an increase of 13.55% over control. Conclusion Although relay cropping G. lucidum with tea bushes in a plantation hindered the growth of the fungi with somewhat reduced commercial appeal, it improved the quality of the fungal product. -
Key words:
- tea plantation /
- Ganoderma lucidum /
- relay cropping /
- growth /
- quality
-
表 1 灵芝生长性能比较
Table 1. Growth performance of G. lucidum
处理
Treatments出芝时间
Germination time/d成熟时间
Mature time/d生长时间
Growth time/d出芝率
Germination rate/%生物转化率
Biotransformation rate/%竖栽覆土 Vertical intercroping 20±2.0 b 70±2.6 b 90±4.6 b 85.2±1.2 b 5.98±1.53 a 横栽覆土 Horizontal intercropping 18±1.7 ab 65±2.0 b 83±3.6 b 83.5±1.0 b 6.28±1.18 a 荫棚覆土 Shade-frame cultivating 15±1.0 a 50±2.0 a 65±3.0 a 98.0±1.0 a 6.68±1.29 a 注:表中同列数据后不同小写字母表示各处理间差异显著(P<0.05),表2同。
Note: Data with different lowercase letters indicate significant differences among treatments (P<0.05). The same for Table 2.表 2 灵芝子实体的商品性状及质量比较
Table 2. Commercial properties and quality of fruitbodies from G. lucidum cultivated under different planting methods
处理
Treatments菌盖长度
Pileus
length/cm菌盖宽度
Pileus
width/cm菌盖厚度
Pileus
thickness/cm菌柄长度
Stipe
length/cm多糖含量
Polysaccharide
contents/%总三萜含量
Total triterpenes
contents/%子实体形状
Fruit body shape商品性状评价
Commodity traits evaluation竖栽覆土
Vertical intercroping9.56±2.83 b 7.20±1.33 b 1.39±0.21 a 4.78±1.56 b 1.09±0.10 a 1.18±0.10 a 肾圆形,较厚,菌柄较短 正常 横栽覆土
Horizontal intercropping10.83±2.36 b 8.02±1.32 b 1.42±0.28 a 5.13±2.13 b 1.08±0.06 a 1.21±0.08 a 肾圆形,较厚,菌柄较短 正常 荫棚覆土
Shade-frame cultivating13.65±3.06 a 10.41±1.51 a 1.50±0.13 a 7.32±1.83 a 0.99±0.01 a 1.00±0.06 a 肾圆形,较厚,菌柄较长 正常 表 3 灵芝的氨基酸含量比较
Table 3. Amino acid content of G. lucidum fruitbodies
[单位:(g·hg−1 DW)] 氨基酸种类
Types of amino acids竖栽覆土
Vertical intercropping横栽覆土
Horizontal intercropping荫棚覆土
Shade-frame cultivation亮氨酸 Leu 0.52±0.04 a 0.50±0.07 a 0.47±0.02 a 异亮氨酸 Ile 0.49±0.05 a 0.52±0.06 a 0.46±0.09 a 赖氨酸 Lys 0.31±0.06 a 0.28±0.09 a 0.31±0.03 a 甲硫(蛋)氨酸 Met 0.05±0.01 a 0.03±0.01 a 0.03±0.01 a 苯丙氨酸 Phe 0.35±0.03 a 0.31±0.08 a 0.30±0.05 a 苏氨酸 Thr 0.48±0.12 a 0.43±0.08 a 0.41±0.12 a 缬(草)氨酸 Val 0.42±0.09 ab 0.49±0.10 a 0.37±0.06 b 色氨酸 Trp 0.06±0.01 a 0.05±0.02 a 0.05±0.01 a 胱氨酸 Cys 0.08±0.04 a 0.06±0.03 a 0.05±0.02 a 酪氨酸 Tyr 0.19±0.06 a 0.15±0.03 a 0.15±0.04 a 谷氨酸 Glu 0.66±0.15 a 0.69±0.29 a 0.70±0.22 a 甘氨酸 Gly 0.40±0.10 a 0.36±0.12 a 0.36±0.09 a 丙氨酸 Ala 0.42±0.04 a 0.44±0.08 a 0.38±0.15 a 天门冬氨酸 Asp 0.76±0.13 a 0.73±0.20 a 0.66±0.19 a 丝氨酸 Ser 0.39±0.07 a 0.37±0.06 a 0.34±0.06 a 组氨酸 His 0.15±0.05 a 0.13±0.04 a 0.13±0.05 a 精氨酸 Arg 0.22±0.05 a 0.27±0.14 a 0.21±0.08 a 脯氨酸 Pro 0.29±0.07 a 0.33±0.09 a 0.27±0.04 a 总氨基酸含量 TAA 6.24±0.38 a 6.15±0.58 a 5.66±0.35 a 非必需氨基酸含量 NEAA 3.56±0.30 a 3.53±0.45 a 3.26±0.19 a 必需氨基酸含量 EAA 2.68±0.36 a 2.62±0.52 a 2.40±0.41 a EAA/TAA 0.429 5 0.426 0 0.424 0 EAA/NEAA 0.752 8 0.742 2 0.736 1 注:表中同行数据后不同小写字母表示各处理间差异显著(P<0.05)。
Note: Data with different lowercase letters indicate significant differences among treatments(P<0.05). -
[1] MONKAI J, HYDE K D, XU J C, et al. Diversity and ecology of soil fungal communities in rubber plantations [J]. Fungal Biology Reviews, 2017, 31(1): 1−11. doi: 10.1016/j.fbr.2016.08.003 [2] 国家药典委员会. 中华人民共和国药典—一部: 2015年版[M]. 北京: 中国医药科技出版社, 2015: 188-189. [3] SINGH S K, DOSHI A, PANCHOLY A, et al. Biodiversity in wood-decay macro-fungi associated with declining arid zone trees of India as revealed by nuclear rDNA analysis [J]. European Journal of Plant Pathology, 2013, 136(2): 373−382. doi: 10.1007/s10658-013-0172-0 [4] CAO Y, YUAN H S. Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data [J]. Mycological Progress, 2013, 12(1): 121−126. doi: 10.1007/s11557-012-0819-9 [5] 卢陆. 林下食用菌经济发展的新模式 [J]. 中国林业产业, 2017(2):56−57.LU L. New Economic Development Model of Edible Fungi under Forest [J]. China Forestry industry, 2017(2): 56−57.(in Chinese) [6] 王峰, 吴志丹, 江福英, 等. 绿肥对茶园生态系统的影响及其发展对策 [J]. 南方农业学报, 2012, 43(3):402−406. doi: 10.3969/j:issn.2095-1191.2012.03.402WANG F, WU Z D, JIANG F Y, et al. Influence of green manure on ecosystem of tea gardens and strategies for its development [J]. Journal of Southern Agriculture, 2012, 43(3): 402−406.(in Chinese) doi: 10.3969/j:issn.2095-1191.2012.03.402 [7] 黄东风, 王利民, 李卫华, 等. 茶园套种牧草对作物产量及土壤基本肥力的影响 [J]. 中国生态农业学报, 2014, 22(11):1289−1293.HUANG D F, WANG L M, LI W H, et al. Effects of inter-planting forage with tea on yield and soil fertility [J]. Chinese Journal of Eco-Agriculture, 2014, 22(11): 1289−1293.(in Chinese) [8] 李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响 [J]. 福建农业学报, 2019, 34(6):690−696.LI Y C, LIN Z N, LU Z, et al. Microbial diversity and community structure in soil under tea bushes-ganoderma lucidum intercropping [J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 690−696.(in Chinese) [9] 黄伟. 浅论食用菌返生态野生栽培 [J]. 中国食用菌, 2008, 27(5):33−34. doi: 10.3969/j.issn.1003-8310.2008.05.010HUANG W. Preliminary view on ecological wild cultivation of edible fungi [J]. Edible Fungi of China, 2008, 27(5): 33−34.(in Chinese) doi: 10.3969/j.issn.1003-8310.2008.05.010 [10] 李振武, 韩海东, 陈敏健, 等. 套种食用菌对茶园土壤和茶树生长的效应 [J]. 福建农业学报, 2013, 28(11):1088−1092. doi: 10.3969/j.issn.1008-0384.2013.11.005LI Z W, HAN H D, CHEN M J, et al. Effects of intercropping Stropharia rugoso-annulata on tea garden soil and tea growth [J]. Fujian Journal of Agricultural Sciences, 2013, 28(11): 1088−1092.(in Chinese) doi: 10.3969/j.issn.1008-0384.2013.11.005 [11] 蒋玉兰, 张海华, 潘俊娴, 等. 茶树和长根菇间作试验研究 [J]. 中国食用菌, 2018, 37(6):32−35, 39.JIANG Y L, ZHANG H H, PAN J X, et al. Experiment study on intercropping of tea trees and Oudemansiella radicata [J]. Edible Fungi of China, 2018, 37(6): 32−35, 39.(in Chinese) [12] 杨洪姣, 马剑, 王睿芳. 茶菌间作共生对大叶茶产量的影响研究 [J]. 农技服务, 2017, 34(2):12−14. doi: 10.3969/j.issn.1004-8421.2017.02.006YANG H J, MA J, WANG R F. Effects of intercropping of tea and edible fungi on the yield of large leaf tea [J]. Agricultural Technology Service, 2017, 34(2): 12−14.(in Chinese) doi: 10.3969/j.issn.1004-8421.2017.02.006 [13] 杨云丽, 马剑, 王睿芳. 茶菌间作模式对大叶茶土壤微生物类群的影响探析 [J]. 南方农业, 2017, 11(2):13−16.YANG Y L, MA J, WANG R F. Effects of tea-edible fungi intercropping on soil microbial groups of large leaf tea [J]. South China Agriculture, 2017, 11(2): 13−16.(in Chinese) [14] 杨国育, 高峻, 武卫, 等. 茶树与食用菌复合栽培模式研究 [J]. 西南农业学报, 2011, 24(6):2112−2115. doi: 10.3969/j.issn.1001-4829.2011.06.018YANG G Y, GAO J, WU W, et al. Studies on interplanting model of tea and edible fungi [J]. Southwest China Journal of Agricultural Sciences, 2011, 24(6): 2112−2115.(in Chinese) doi: 10.3969/j.issn.1001-4829.2011.06.018 [15] 张洛新, 李灿, 杨建学, 等. 灵芝代料栽培技术 [J]. 中国林副特产, 2004(3):31−32. doi: 10.3969/j.issn.1001-6902.2004.03.026ZHANG L X, LI C, YANG J X, et al. Cultivation technology of Ganoderma lucidum with bagged materials [J]. Forest By-product and Speciality in China, 2004(3): 31−32.(in Chinese) doi: 10.3969/j.issn.1001-6902.2004.03.026 [16] 中华人民共和国卫生部. 食品中氨基酸的测定方法: GB/T5009.124-2003[S]. 北京: 中国标准出版社, 2003. [17] 中华人民共和国农业部. 饲料中色氨酸测定方法-分光光度法: GB/T15400-1994[S]. 北京: 中国标准出版社, 1994. [18] 周春红, 董佳. 人工栽培灵芝与野生灵芝活性成分的比较分析 [J]. 中国食物与营养, 2010, 16(12):65−68. doi: 10.3969/j.issn.1006-9577.2010.12.019ZHOU C H, DONG J. Comparative analysis of active components between wild and cultivated Ganoderma lucidum [J]. Food and Nutrition in China, 2010, 16(12): 65−68.(in Chinese) doi: 10.3969/j.issn.1006-9577.2010.12.019 [19] 陈体强, 徐洁, 吴锦忠. 福建省常见灵芝的氨基酸分析比较 [J]. 海峡药学, 2004, 16(5):1−4. doi: 10.3969/j.issn.1006-3765.2004.05.001CHEN T Q, XU J, WU J Z. Analysis and comparison of amino acids in the fruitbody of wild and log-cultivated Linzhi in Fujian [J]. Strait Pharmaceutical Journal, 2004, 16(5): 1−4.(in Chinese) doi: 10.3969/j.issn.1006-3765.2004.05.001 [20] 曹启民, 张永北, 宋绍红, 等. 灵芝菌糠发酵饲料对育肥猪生产性能的影响 [J]. 中国饲料, 2013(9):39−41.CAO Q M, ZHANG Y B, SONG S H, et al. Effects of Ganoderma WMLE feed on production performance of finishing pigs [J]. China Feed, 2013(9): 39−41.(in Chinese) [21] 李忠, 曾振基, 宋斌, 等. 灵芝菌糠替代部分木屑栽培金针菇的研究 [J]. 中国食用菌, 2015, 34(1):26−28, 43.LI Z, ZENG Z J, SONG B, et al. Study on the effect of spent Ganoderma lucidum substrate partial substitute sawdust on Flammulina velutipes cultivation [J]. Edible Fungi of China, 2015, 34(1): 26−28, 43.(in Chinese)