Effects of Limb Retention on Apple Trees Pruned to Tall-spindle Shape on Fruit Yield and Quality
-
摘要:
目的 确定苹果高纺锤形树形构建中特定阶段的最佳树相参数,为果园科学修剪提供理论依据。 方法 以5~7 年生矮化高纺锤形苹果树为试材,研究不同主枝数量对树体产量及果实品质的影响。 结果 试验所涉区间内,苹果的株产随主枝数的增加呈先增后降的趋势,在主枝数为25个时产量达最高值。苹果的单果重随着主枝数量的增加而降低,在主枝数23~24个时,其单果重最高。果肉中可溶性固形物(TSS)和果皮中花色苷含量均随主枝数的增加而降低,均在主枝数23~25个时,其TSS和花色苷含量达最高。相关分析表明,苹果的株产、单果重、TSS和花色苷含量均与主枝数显著负相关(r=-0.721~-0.964)。 结论 综合各指标,主枝数为24.29个时,5~7 年生高纺锤形苹果的平均株产、单果重、果肉TSS及果皮花色苷含量四指标均可达相对较高水平。 Abstract:Objective The optimum amount of limbs to be retained on an apple tree pruned to a tall-spindle shape that would result in high-yield of quality fruits was investigated. Method Effects of the amount of saved limbs after pruning on fruit yield and quality of 5–7 years old dwarf apple trees were determined. Result The average fruit yield per apply plant increased, and then declined, with increasing number of limbs retained, within a range, after the pruning. The yield peaked when 25 main branches were saved, while the individual fruit weight maximized when 23–24 limbs remained on a plant. The greatest total soluble solids (TSS) and anthocyanin contents in the apples were found on the trees with 23–25 limbs retained and decreased as the number of the limbs increased. The correlations between the limb retention and those indicators were significant with coefficients ranging between −0.721 and −0.964. Conclusion Taking the yield per plant as well as the individual fruit weight, TSS, and total anthocyanin of apples into consideration, a 5–7 years old dwarf tree could be pruned onto a tall-spindle shape with 24.29 limbs remaining to achieve maximized results. -
Key words:
- Malus pumila. /
- limbs amounts /
- apple yield /
- fruit quality
-
表 1 高纺锤形苹果不同主枝数与其单株产量、单果重、果肉TSS及果皮花色苷含量间的相关关系
Table 1. Correlations between limb amount and fruit yield, individual fruit weight, TSS, and total anthocyanin of pruned apple trees
指标 Character 回归方程 Regression equation R2 r 株产/主枝数 Averaged yield per plant/Limbs amounts y=−0.231x2+11.65x−117.07 0.864 4 −0.721** 单果重/主枝数 Single fruit weight/Limbs amounts y=−0.967 3x2+42.473x−168 0.977 5 −0.964** TSS/主枝数 TSS/Limbs amounts y=−0.004 6x2+0.141 4x+15.301 0.967 6 −0.958** 花色苷/主枝数 Total anthocyanin content/Limbs amounts y=−1.359 5x2+57.924x−379.97 0.908 9 −0.936** 注:R2:决定系数,r:相关系数,*P<0.05,**P<0.01。
Note:R2: determination coefficient;r: correlation coefficient. * correlation is significant at the 0.05 level,** correlation is significant at the 0.01 level.表 2 苹果单株产量、单果重、果实中TSS含量及果皮中花色苷4指标加权值与主枝数量间的曲线估计
Table 2. Estimated weighed averages on fruit yield, individual fruit weight, TSS, and total anthocyanin of apple trees pruned to retain varied amounts of limbs
曲线估计 Curve estimation 回归方程 Regression equation R2 r 线性 Linear y=−0.708 7 x+116.61 0.858 1 −0.926 对数 Logarithmic y=−18.423 Ln(x)+158.14 0.834 3 −0.926 指数 Exponential y=118.61 e−0.007 3 x 0.857 7 −0.913 乘幂 Power y=181.66 x−0.189 1 0.833 7 −0.913 二项式 Quadratic y=−0.121 x2+5.703 4 x+32.284 0.958 2 −0.927 三项式 Cubic y=0.032 2 x3−2.681 8 x2+73.268 x−559.27 0.983 2 −0.992 表 3 苹果主枝数量的最优参数
Table 3. Limb amounts on a pruned apple tree for optimum results
树相参数 Parameter of tree 回归方程 Regression equation R2 r 区间 Interval 最优参数 Optimum amount of limbs 主枝数量 Limbs amounts y=0.032 2 x3−2.681 8 x2+73.268 x−559.27 0.983 2 −0.992 [23, 30] 24.29 -
[1] 张雲慧, 李文胜, 周文静, 等. 苹果分层纺锤形冠层结构与果实产量品质的关系 [J]. 新疆农业科学, 2018, 55(7):1218−1226.ZHANG Y H, LI W S, ZHOU W J, et al. Study on the relationship between apple layered spindle canopy structure and yield and quality [J]. Xinjiang Agricultural Sciences, 2018, 55(7): 1218−1226.(in Chinese) [2] 翟衡, 史大川, 束怀瑞. 我国苹果产业发展现状与趋势 [J]. 果树学报, 2007, 24(3):355−360.ZHAI H, SHI D C, SHU H R. Current status and developing trend of apple industry in China [J]. Journal of Fruit Science, 2007, 24(3): 355−360.(in Chinese) [3] 马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考 [J]. 果树学报, 2010, 27(1):105−109.MA B K, XU J Z, SUN J S. Consideration for high density planting with dwarf rootstocks in apple in China [J]. Journal of Fruit Science, 2010, 27(1): 105−109.(in Chinese) [4] 张林森, 马锋旺, 李丙智, 等. 国外苹果高纺锤形整形技术与应用 [J]. 中国果树, 2007(6):69−70. doi: 10.3969/j.issn.1000-8047.2007.06.043ZHANG L S, MA F W, LI B Z, et al. The Pruning Technology and Application of Apple abroad by Tall spindle shaping [J]. China Fruits, 2007(6): 69−70.(in Chinese) doi: 10.3969/j.issn.1000-8047.2007.06.043 [5] 李绍华, 李明, 刘国杰, 等. 直立中央领导干树形条件下幼年苹果树体生长特性的研究 [J]. 中国农业科学, 2002, 35(7):826−830. doi: 10.3321/j.issn:0578-1752.2002.07.016LI S H, LI M, LIU G J, et al. Vegetative growth characters of the young apple trees trained in vertical Axis [J]. Scientia Agricultura Sinica, 2002, 35(7): 826−830.(in Chinese) doi: 10.3321/j.issn:0578-1752.2002.07.016 [6] 岳伟, 孙树林, 李丙智, 等. 自根砧苹果大苗高纺锤形整形修剪技术 [J]. 陕西农业科学, 2015, 61(7):118−119. doi: 10.3969/j.issn.0488-5368.2015.07.041YUE W, SUN S L, LI B Z, et al. The pruning Technology of big apple seedlings on Rootstock by Tall Shape Shaping [J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(7): 118−119.(in Chinese) doi: 10.3969/j.issn.0488-5368.2015.07.041 [7] 崔娟子, 刘养峰. 不同树龄矮化苹果树高纺锤形整形修剪 [J]. 西北园艺, 2019(1):12−13.CUI J Z, LIU Y F. Yang-feng The pruning Technology of Tall spindle Shaped Apple Trees with Different Ages [J]. Northwest Horticulture, 2019(1): 12−13.(in Chinese) [8] 王菲, 张社奇, 李丙智, 等. 高纺锤形苹果树三维重建和光照特性的评价 [J]. 北方园艺, 2012(6):10−13.WANG F, ZHANG S Q, LI B Z, et al. Three-dimensional reconstruction of trees trained to tall spindle shape and assessment of light characteristics [J]. Northern Horticulture, 2012(6): 10−13.(in Chinese) [9] 董然然, 安贵阳, 赵政阳, 等. 不同树形矮化自根砧苹果的冠内光照及其生长和产量比较 [J]. 中国农业科学, 2013, 46(9):1867−1873. doi: 10.3864/j.issn.0578-1752.2013.09.014DONG R R, AN G Y, ZHAO Z Y, et al. Comparison of light interception ability and growth and yield of different apple tree shapes on dwarf rootstock [J]. Scientia Agricultura Sinica, 2013, 46(9): 1867−1873.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.09.014 [10] 王琰, 范崇辉, 江道伟, 等. 苹果不同树形树冠特性和果实品质的比较 [J]. 西北农业学报, 2011, 20(12):93−97. doi: 10.3969/j.issn.1004-1389.2011.12.018WANG Y, FAN C H, JIANG D W, et al. Comparison on crown characteristics and fruit quality of different tree canopy shapes [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(12): 93−97.(in Chinese) doi: 10.3969/j.issn.1004-1389.2011.12.018 [11] 李永武, 韩明玉, 李丙智, 等. 富士郁闭果园改造为VA(vertical axis)树形的研究初探 [J]. 西北林学院学报, 2008, 23(1):126−129, 137.LI Y W, HAN M Y, LI B Z, et al. Modification of apple tree to vertical Axis shape in closed orchard [J]. Journal of Northwest Forestry University, 2008, 23(1): 126−129, 137.(in Chinese) [12] 梁海忠, 范崇辉, 王琰, 等. 苹果高纺锤形树体枝量、果实产量与品质的研究 [J]. 西北农林科技大学学报(自然科学版), 2010, 38(7):123−128.LIANG H Z, FAN C H, WANG Y, et al. Research on shoot number, fruit yield and quality of high-spindle apple trees [J]. Journal of Northwest A & F University(Natural Science Edition), 2010, 38(7): 123−128.(in Chinese) [13] 董然然, 安贵阳, 赵政阳, 等. 苹果高纺锤形和V形冠层结构参数与果实品质的相关性分析 [J]. 西北农林科技大学学报(自然科学版), 2013, 41(1):125−129, 136.DONG R R, AN G Y, ZHAO Z Y, et al. Correlation analysis of tall spindle and V-trellis canopies and fruit quality on apple saplings [J]. Journal of Northwest A & F University(Natural Science Edition), 2013, 41(1): 125−129, 136.(in Chinese) [14] 仝月澳, 周厚基. 果树营养诊断法[M]. 北京: 农业出版社, 1982: 133-150.
TONG Y A, ZHOU H J. Nutritional Diagnosis Method of Fruit Trees[M]. Beijing: Agricultural Press, 1982: 133-150. (in Chinese)[15] CARUSO T, GIOVANNINI D, MARRA F P, et al. Planting density, above-ground dry-matter partitioning and fruit quality in greenhouse-grown ‘Flordaprince’ peach (Prunus persica L. Batsch) trees trained to ‘free-standing Tatura’ [J]. The Journal of Horticultural Science and Biotechnology, 1999, 74(5): 547−552. doi: 10.1080/14620316.1999.11511150 [16] WIDMER A, KREBS C. Influence of planting density and tree form on yield and fruit quality of ‘golden delicious’ and ‘royal gala’ apples [J]. Acta Horticulturae, 2001(557): 235−242. [17] Kaith N, Sharma U, Sharma D, et al. Effect of different pruning intensities on growth, yield and leaf nutrients status of starking delicious apple in hilly region of Himachal Pradesh [J]. Journal of Farm Sciences, 2011, 1(1): 37−42. [18] TRAD M, GAALICHE B, RENARD C M G C, et al. Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy [J]. Scientia Horticulturae, 2013, 162: 49−54. doi: 10.1016/j.scienta.2013.07.032 [19] JAJO A, RAHIM M A, SERRA S, et al. Impact of tree training system, branch type and position in the canopy on the ripening homogeneity of ‘Abbé Fétel’ pear fruit [J]. Tree Genetics & Genomes, 2014, 10(5): 1477−1488. [20] ZHANG J J, SERRA S, LEISSO R S, et al. Effect of light microclimate on the quality of ‘d’Anjou’ pears in mature open-centre tree architecture [J]. Biosystems Engineering, 2016, 141: 1−11. [21] 王红宁, 牛自勉, 蔚露, 等. 高干开心形苹果园亩枝量对苹果产量及品质的影响 [J]. 河北农业大学学报, 2018, 41(2):42−48.WANG H N, NIU Z M, YU L, et al. Effects of different shoots amounts after pruning on the yield and fruit quality of high stem open-centre apple tree [J]. Journal of Hebei Agricultural University, 2018, 41(2): 42−48.(in Chinese) [22] 杨婷斐, 刘丹花, 邹养军, 等. 不同留枝量对‘玉华早富’苹果光合、养分含量和开花坐果的影响 [J]. 西北农业学报, 2014, 23(9):177−182.YANG T F, LIU D H, ZOU Y J, et al. Effect of different shoot numbers after pruning on photosynthesis, macro nutrition content, flowering and fruit set on ‘yuhuazaofu’ apple [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(9): 177−182.(in Chinese) [23] 谢鹏, 蔚露, 牛自勉, 等. 果园间伐对梨叶片叶绿素荧光特性的影响 [J]. 山西农业科学, 2015, 43(4):407−410. doi: 10.3969/j.issn.1002-2481.2015.04.10XIE P, YU L, NIU Z M, et al. Effect of tree-thinning to chlorophyll fluorescence characteristics of pear leaves [J]. Journal of Shanxi Agricultural Sciences, 2015, 43(4): 407−410.(in Chinese) doi: 10.3969/j.issn.1002-2481.2015.04.10 [24] 梁海忠, 范崇辉, 江道伟. 不同树龄苹果高纺锤形树体结构及产量的研究 [J]. 西北林学院学报, 2011, 26(4):152−154.LIANG H Z, FAN C H, JIANG D W. Structure and yield of tall-spindle shaped apple trees with different ages [J]. Journal of Northwest Forestry University, 2011, 26(4): 152−154.(in Chinese)