• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习和无人机遥感技术的玉米雄穗检测研究

梁胤豪 陈全 董彩霞 杨长才

梁胤豪,陈全,董彩霞,等. 基于深度学习和无人机遥感技术的玉米雄穗检测研究 [J]. 福建农业学报,2020,35(4):456−464 doi: 10.19303/j.issn.1008-0384.2020.04.014
引用本文: 梁胤豪,陈全,董彩霞,等. 基于深度学习和无人机遥感技术的玉米雄穗检测研究 [J]. 福建农业学报,2020,35(4):456−464 doi: 10.19303/j.issn.1008-0384.2020.04.014
LIANG Y H, CHEN Q, DONG C X, et al. Application of Deep-learning and UAV for Field Surveying Corn Tassel [J]. Fujian Journal of Agricultural Sciences,2020,35(4):456−464 doi: 10.19303/j.issn.1008-0384.2020.04.014
Citation: LIANG Y H, CHEN Q, DONG C X, et al. Application of Deep-learning and UAV for Field Surveying Corn Tassel [J]. Fujian Journal of Agricultural Sciences,2020,35(4):456−464 doi: 10.19303/j.issn.1008-0384.2020.04.014

基于深度学习和无人机遥感技术的玉米雄穗检测研究

doi: 10.19303/j.issn.1008-0384.2020.04.014
基金项目: 国家自然科学基金项目(61802064、61701117);福建省自然科学基金项目(2019J01402)
详细信息
    作者简介:

    梁胤豪(1998−),男,研究方向:计算机应用(E-mail:lyhmath@163.com

    通讯作者:

    杨长才(1981−),男,博士,副教授,研究方向:计算机视觉与作物表型识别(E-mail:changcaiyang@gmail.com

  • 中图分类号: S 513;S 127

Application of Deep-learning and UAV for Field Surveying Corn Tassel

  • 摘要:   目的  玉米雄穗在玉米的生长过程和最终产量中起关键作用,使用无人机采集玉米抽穗期的RGB图像,研究不同的目标检测算法,构建适用于无人机智能检测玉米雄穗的模型,自动计算图像中雄穗的个数。  方法  使用无人飞行器(UAV)在25 m飞行高度下获得大量玉米抽穗时期的RGB图像,裁剪并标注出图像中玉米雄穗的位置和大小,训练数据和测试数据按照3:1的比例划分数据集;在深度学习框架MXNet下,利用这些数据集,分别训练基于ResNet50的Faster R-CNN、基于ResNet50的SSD、基于mobilenet的SSD和YOLOv3等4种模型,对比4种模型的准确率、检测速度和模型大小。  结果  使用无人机采集了236张图像,裁剪成1024×1024大小的图片,去除成像质量差的图像,利用标注软件labelme获得100张标注的玉米雄穗数据集;最终得到4个模型的mAP值分别为0.73、0.49、0.58和0.72。在测试数据集上进行测试,Faster R-CNN模型的准确率最高为93.79%,YOLOv3的准确率最低,仅有20.04%,基于ResNet50的SSD和基于mobilenet的SSD分别为89.9%和89.6%。在识别的速度上,SSD_mobilenet最快(8.9 samples·s−1),Faster R-CNN最慢(2.6 samples·s−1),YOLOv3检测速度为3.47 samples·s−1, SDD_ResNet50检测速度为7.4 samples·s−1。在模型大小上,YOLO v3的模型最大,为241 Mb,SSD_mobilenet的模型最小,为55.519 Mb。  结论  由于无人机的机载平台计算资源稀缺,综合模型的速度、准确率和模型大小考虑,SSD_mobilenet最适于部署在无人机机载系统上用于玉米雄穗的检测。
  • 图  1  无人机航线规划

    Figure  1.  Planning of UAV flight routes

    图  2  试验田、航线设置、DJI无人机与LabelImg数据标注

    Figure  2.  Experimentation field, flight routes, DJI drone, and LabelImg data annotation

    图  3  模型在训练过程中的损失函数曲线

    Figure  3.  Loss function of model during training

    图  4  SSD_mobilenet的预测结果

    Figure  4.  Prediction by SSD-mobilenet

    图  5  SSD_ResNet50的预测结果

    Figure  5.  Prediction by SSD_ResNet50

    图  6  Faster R-CNN的预测结果

    Figure  6.  Prediction by Faster R-CNN

    图  7  YOLO v3的预测结果

    Figure  7.  Prediction by YOLOv3

    图  8  模型的预测结果对比

    注:Faster R-CNN、YOLO v3、SSD_ResNet50和SSD_mobilenet的计数准确率分别为93.79%、20.04%、87.6%和89.9%.

    Figure  8.  Comparison of predictions by various models

    Note: Detection accuracy of Faster R-CNN was 93.79%; YOLO v3, 20.04%; SSD_ResNet50, 87.6%; and, SSD_mobilenet, 89.9%.

    图  9  模型训练过程的mAP曲线

    Figure  9.  mAP curves of models in testing

    表  1  试验硬件与软件信息

    Table  1.   Information on hardware and software for testing

    硬件信息 Hardware information软件信息 Software information
    平台 Platform型号 Model参数 Parameters平台 Platform版本 Version
    CPU E5-2680v2 2.8 GHz CUDA 10.0
    RAM DDR3 128 G CUDNN 7.6.5
    GPU 1080ti 11 G MXNet 1.5.0
    下载: 导出CSV

    表  2  模型训练的超参数

    Table  2.   Hyperparameters for model training

    参数 ParametersFaster R-CNNYOLO v3SSDSSD
    base-network ResNet50 darknet53 ResNet50 mobilenet
    batch-size 4 8 16 16
    epochs 400 300 300 400
    learning rate 0.001 0.0001 0.0001 0.0001
    下载: 导出CSV

    表  3  模型的mAP

    Table  3.   mAPs of models

    模型 ModelFaster R-CNNSSD_ResNet50SSD_mobilenetYOLO v3
    mAP0.73060.49050.57800.7265
    下载: 导出CSV

    表  4  模型的测试误差和计数准确率比较

    Table  4.   Comparison of test errors and detection accuracies by models

    模型 ModelFaster R-CNNSSD_ResNet50SSD_mobilenetYOLO v3
    误差均值 Mean error 4.7308 9.2692 7.5385 62.1154
    均方差 Mean square error 5.3649 11.5175 8.8915 14.0311
    计算准确率 Calculation accuracy/% 93.79 87.60 89.90 20.04
    下载: 导出CSV

    表  5  模型的处理速度和参数大小比较

    Table  5.   Comparison of processing speeds and parameters of models

    模型 ModelFaster R-CNNSSD_ResNet50SSD_mobilenetYOLO v3
    处理速度 Processing speed/(samples·s−1 2.6 7.4 8.9 3.47
    参数大小 Parameter size/M 133.873 144.277 55.519 241.343
    下载: 导出CSV
  • [1] HUANG J X, GÓMEZ-DANS J L, HUANG H, et al. Assimilation of remote sensing into crop growth models: Current status and perspectives [J]. Agricultural and Forest Meteorology, 2019, 276/277: 107609. doi: 10.1016/j.agrformet.2019.06.008
    [2] MADEC S, JIN X L, LU H, et al. Ear density estimation from high resolution RGB imagery using deep learning technique [J]. Agricultural and Forest Meteorology, 2019, 264: 225−234. doi: 10.1016/j.agrformet.2018.10.013
    [3] QUAN L Z, FENG H Q, LV Y, et al. Maize seedling detection under different growth stages and complex field environments based on an improved Faster R–CNN [J]. Biosystems Engineering, 2019, 184: 1−23. doi: 10.1016/j.biosystemseng.2019.05.002
    [4] ZHOU C Q, LIANG D, YANG X D, et al. Recognition of wheat spike from field based phenotype platform using multi-sensor Fusion and improved maximum entropy segmentation algorithms [J]. Remote Sensing, 2018, 10(2): 246. doi: 10.3390/rs10020246
    [5] KURTULMUŞ F, KAVDIR İ. Detecting corn tassels using computer vision and support vector machines [J]. Expert Systems with Applications, 2014, 41(16): 7390−7397. doi: 10.1016/j.eswa.2014.06.013
    [6] LU H, CAO Z G, XIAO Y, et al. Fine-grained maize tassel trait characterization with multi-view representations [J]. Computers and Electronics in Agriculture, 2015, 118: 143−158. doi: 10.1016/j.compag.2015.08.027
    [7] LU H, CAO Z G, XIAO Y, et al. TasselNet: counting maize tassels in the wild via local counts regression network [J]. Plant Methods, 2017, 13: 79. doi: 10.1186/s13007-017-0224-0
    [8] LIU Y L, CEN C J, CHE Y P, et al. Detection of maize tassels from UAV RGB imagery with faster R-CNN [J]. Remote Sensing, 2020, 12(2): 338. doi: 10.3390/rs12020338
    [9] LabelImg (Available online) [DB/OL]. https://www.github.com/tzutalin/labelImg (accessed on 25 December 2015).
    [10] LIU L, OUYANG W, WANG X G, et al. Deep learning for generic object detection: a survey [J]. International Journal of Computer Vision, 2020, 128(2): 261−318. doi: 10.1007/s11263-019-01247-4
    [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]. Computer Vision-ECCV. Cham: Springer International Publishing, 2016: 21-37.[LinkOut]
    [12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI. IEEE, 2017.
    [13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031
    [14] CHEN T Q, LI M, LI Y T, et al. MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems[EB/OL]. 2015-12-03. https://arxiv.org/abs/1512.01274.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1609
  • HTML全文浏览量:  904
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-04-15
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回