Effects of Planting Density and Nitrogen Application on Yield and Nitrogen Utilization of Winter Potato Plants
-
摘要:
目的 探讨密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率(AEN)的协同调控效应,为冬作马铃薯高产高效栽培提供理论参考和技术支撑。 方法 以冬作马铃薯主栽品种闽薯1号为材料,采用田间裂区试验设计,主区设3种密度(4.76万、6.67万和10.96 万株·hm−2,分别以D4.76、D6.67和D10.96表示),副区设4个施氮水平(0、75、150和300 kg·hm−2,分别以N0、N75、N150和N300表示),研究密度与施氮对冬作马铃薯产量、氮肥农学利用率(AEN)和叶片光合特性的影响。 结果 密度和施氮及其互作对马铃薯总产量和AEN均有显著影响,适当增密有利于提高马铃薯总产和AEN,其中D6.67处理产量最高,AEN则以D10.96处理最高。在N300水平下,D6.67和D10.96处理总产比D4.76处理分别提高21.3%和21.2%,AEN分别提高20.5%和49.2%,增幅比在其他施氮水平下明显,表明高氮水平下增密效果更显著。施氮显著提高了马铃薯产量,且在施氮量为150 kg·hm−2时产量最高。在D4.76和D6.67条件下,N75和N150处理产量差异不明显,但在D10.96条件下N75处理产量显著降低。AEN随施氮量增加明显下降,相比N75处理,N150和N300处理的AEN分别下降41.2%和75.2%。与不施氮相比,施氮显著提高了叶片气体交换参数和相对叶绿素含量SPAD,而高密种植不利于叶片光合效率的提高,D10.96处理叶片净光合速率Pn均低于D6.67处理。相关性分析发现,叶片光合特性与马铃薯总产量之间均呈显著正相关。 结论 在本试验条件下,6.67万株·hm−2和150 kg·hm−2的处理组合产量最高(32.2 t·hm−2),10.96万株·hm−2和75 kg·hm−2的处理组合AEN最高(156.5 kg·kg−1);高氮水平配合增密、中低密度配合减氮可作为协同提高冬作马铃薯产量和氮肥农学利用率的参考途径。 Abstract:Objective Effects of planting density and nitrogen (N) application on the yield and agronomic efficiency on N (AEN) of winter potato were studied to improve the crop cultivation practices. Method Minshu 1 , a major winter potato cultivar, was used to determine the effects of planting density and N application rate on tuber yield, AEN, and leaf photosynthesis of the plants in a split plot experimentation. Three planting densities at 47 600 plant·hm−2 (D4.76), 66 700 plant·hm−2 (D6.67), and 109 600 plant·hm−2 (D10.96) were implemented on a main plot, and 4 varied N inputs applied at the rates of 0 kg·hm−2 (N0), 75 kg·hm−2 (N75), 150 kg·hm−2 (N150), and 300 kg·hm−2 (N300) on a subplot. Result Both planting density and N input significantly affected the tuber yield and AEN of the potato plants. The two independent variables also significantly interacted to result in varied effects. Increasing the planting density improved the total yield and AEN of the potato plants, as D6.67 delivered the highest yield, while D10.96 the highest AEN, among all treatments. With N300, the total potato yields under D6.67 and D10.96 were 21.3% and 21.2%, respectively, whereas, AEN 20.5% and 49.2%, respectively, higher than those under D4.76. N applications significantly affected the tuber production with the highest yield found with N150. There was no significant difference on the yield between N75 and N150 under D4.76 or D6.67. But, as the planting became denser under D10.96, the N75 treatment produced significantly less potatoes than N150. AEN of the plants decreased with increasing N input. As compared to N75, N150 and N300 showed significantly reduced AEN by 41.2% and 75.2%, respectively. N application promoted the gas exchange parameters and SPAD on the leaves of the potato plants. High planting density was detrimental to photosynthetic efficiency, as shown by the leaf Pn of D10.96 being lower than that of D6.67. There was a significant correlation between the photosynthetic characteristics and potato yield of a plant. Conclusion In the experimentation, the highest tuber yield of 32.2 t·hm−2 was achieved when the potato were planted at 66 700 plant·hm−2 and fertilized with 150 kg N·hm−2. The greatest AEN of 156.5 kg·kg−1 was achieved with a planting density of 109 600 plant·hm−2 and a N input of 75 kg·hm−2. Thus, planting potato plants either at a high density with increased N application or at a low or medium density with reduced N input could improve the tuber yield and AEN of the plants. -
Key words:
- potato /
- planting density /
- nitrogen application /
- tuber yield /
- nitrogen agronomic efficiency
-
表 1 不同处理下马铃薯出苗率、产量和氮肥农学利用率的方差分析(F值)
Table 1. Variance analysis on seedling emergence, tuber yield, and AEN of potato plants under different treatments (F value)
变异来源
Sources of variation出苗率
Emergence ratio总产量
Total yield商品薯产量
Commercial tuber yield非商品薯产量
Noncommercial tuber yield商品薯率
Commodity potato rateAEN D 26.8* 6.9* 3.1 34.4** 14.6* 13.5* N 431.0** 228.6** 166.3** 2.7 19.0** 650.0** D×N 4.8* 2.7* 3.3* 1.5 1.5 3.5* 注:D、N和D×N分别表示密度、施氮及其互作;AEN表示氮肥农学利用率;* 和**分别表示差异达5%和1%显著水平。表3同。
Note: D, N, and D×N indicate planting density, N fertilization, and interaction between D and N, respectively; AEN indicates N agronomic efficiency; *and** indicates significant differences at the 5% and 1% levels,respectively;. The same as Table 3.表 2 密度氮肥互作对马铃薯产量的影响
Table 2. Interacting effect of planting density and N input on potato yield
指标 Index 处理 Treatments N0 N75 N150 N300 商品薯产量
Commercial tuber yield/(t·hm−2)D4.76 13.4±1.4 (c) 24.8±0.9 (ab) 26.7±1.6 (a) 22.6±2.3 b (b) D6.67 16.4±1.7 (c) 25.7±2.2 (b) 28.7±2.3 (a) 27.3±1.2 a (ab) D10.96 12.7±0.9 (c) 22.9±1.9 (b) 26.3±1.2 (a) 27.0±2.4 a (a) 非商品薯产量
Noncommercial tuber yield/(t·hm−2)D4.76 3.4±0.6 b (a) 3.2±0.6 b (a) 2.8±0.8 b (a) 3.1±0.7 (a) D6.67 4.0±0.8 ab (a) 4.4±0.7 b (a) 3.5±0.7 b (a) 3.8±1.0 (a) D10.96 5.1±0.8 a (b) 6.7±0.9 a (a) 5.5±1.0 a (ab) 4.2±0.9 (b) 商品薯率
Commodity potato rate/%D4.76 79.6±4.0 a (b) 88.5±1.8 a (a) 90.4±3.1 a (a) 87.6±3.4 (a) D6.67 80.4±4.4 a (b) 85.3±2.9 a (ab) 89.1±2.5 a (a) 87.7±3.3 (a) D10.96 71.4±3.8 b (c) 77.3±3.5 b (b) 82.7±2.0 b (ab) 86.4±3.6 (a) 总产量
Total yield/(t·hm−2)D4.76 16.8±1.4 b (c) 28.1±1.4 (a) 29.5±0.9 (a) 25.7±1.4 b (b) D6.67 20.4±1.3 a (b) 30.1±1.5 (a) 32.2±1.8 (a) 31.2±0.7 a (a) D10.96 17.8±1.0 ab (c) 29.6±1.5 (b) 31.8±2.1 (a) 31.2±1.5 a (ab) 注:同列数据后不同小写字母(括号外)表示同一施氮水平下不同密度间在0.05水平差异显著;同行数据后不同小写字母(括号内)表示同一密度条件下不同施氮处理间在0.05水平差异显著,未标注则表示处理间无显著差异。表4同。
Note: Data with different bold letters on same column indicate significant difference at 0.05 level among different planting densities with a same N rate; data with different letters on same row(in parentheses)indicate significant difference at 0.05 level among different N rates under a same planting density; unmarked data indicate no significant difference between treatments. The same as Tbale 4.表 3 不同处理下马铃薯叶片光合特性的方差分析(F值)
Table 3. Variance analysis on leaf photosynthetic traits of potato plants under different treatments(F value)
变异来源
Sources of variation现蕾期 Squaring period 块茎膨大期 Tuber expansion period Pn Gs Ci Tr SPAD Pn Gs Ci Tr SPAD D 5.3 1.6 0.5 0.5 10.4* 10.6* 3.7 18.0** 18.7** 9.7* N 7.4** 3.8** 2.0 10.3** 114.9** 23.2** 4.5* 8.3** 14.0** 139.7** D×N 1.2 1.0 0.3 0.4 2.9* 1.8 2.1 3.2* 0.6 3.4* 表 4 密度氮肥互作对冬作马铃薯叶片气体交换参数和SPAD的影响
Table 4. Interacting effects of planting density and N input on gas exchange and SPAD in leaves of potato plants
指标
Index处理
Treatments现蕾期 Squaring period 块茎膨大期 Tuber expansion period N0 N75 N150 N300 N0 N75 N150 N300 净光合速率/
Pn(μmol CO2·m−2·s−1)D4.76 17.8±1.9 (b) 22.4±1.6 a (a) 21.7±2.1 (a) 18.6±1.7 (b) 17.7±0.6 a (b) 18.1±1.3 (b) 18.9±0.8 (b) 21.4±2.9 (a) D6.67 19.7±0.9 (b) 21.5±1.9 ab (ab) 23.6±2.4 (a) 21.1±1.3 (ab) 15.2±0.6 b (b) 16.2±0.9 (b) 19.8±0.2 (a) 19.7±0.3 (a) D10.96 16.9±1.5 18.1±1.9 b 20.1±1.5 19.3±2.2 13.6±0.8 b (b) 16.2±0.7 (a) 17.6±1.3 (a) 17.9±2.1 (a) 气孔导度/
Gs(mol·m−2·s−1)D4.76 0.46±0.10 0.56±0.09 0.52±0.08 0.54±0.07 0.45±0.07 (b) 0.53±0.08 a (ab) 0.51±0.05 (ab) 0.57±0.03 (a) D6.67 0.50±0.04 0.60±0.12 0.59±0.06 0.53±0.10 0.37±0.03 (bc) 0.33±0.04 b (c) 0.44±0.08 (ab) 0.47±0.05 (a) D10.96 0.40±0.09 (b) 0.46±0.09 (ab) 0.47±0.07 (ab) 0.55±0.09 (a) 0.41±0.07 0.49±0.09 a 0.51±0.09 0.44±0.07 胞间CO2浓度/
Ci(μmol·mol−1)D4.76 316.3±10.1 323.7±13.6 331.2±17.2 322.8±10.0 301.0±16.6 a 305.9±9.3 a 318.3±13.8 313.1±3.6 D6.67 315.0±13.3 339.1±18.8 335.7±8.2 329.9±6.5 296.4±5.3 a 308.2±10.4 a 302.0±5.5 309.7±10.2 D10.96 312.7±14.9 334.5±34.0 323.4±10.9 328.3±21.7 259.4±18.5 b (c) 284.2±9.7 b (b) 317.5±9.6 (a) 286.7±6.3 (b) 蒸腾速率
Tr/(mmol·m−2·s−1)D4.76 4.4±0.7 (b) 5.2±0.4 (a) 5.3±0.5 (a) 5.3±0.5 (a) 4.5±0.5 a (b) 5.0±0.5 a (b) 5.3±0.5 (ab) 6.1±0.5 (a) D6.67 4.2±0.7 (b) 4.6±0.4 (ab) 5.0±0.7 (a) 4.9±0.7 (a) 3.6±0.3 b (c) 3.8±0.4 b (bc) 4.6±0.3 (ab) 5.2±0.2 (a) D10.96 4.1±0.7 (c) 4.4±0.8 (bc) 5.2±1.0 (a) 4.8±0.7 (ab) 4.1±0.3 ab (b) 4.8±0.1 a (ab) 4.8±0.6 (ab) 5.2±0.7 (a) SPAD D4.76 32.9±0.9 (b) 39.9±1.0 a (a) 42.1±1.6 (a) 41.8±0.5 (a) 31.7±0.6 (b) 38.8±0.7 a (a) 40.9±1.3 (a) 40.6±0.7 (a) D6.67 31.6±1.0 (c) 36.4±1.4 b (b) 40.0±0.9 (a) 42.3±1.0 (a) 30.2±1.0 (d) 35.2±1.4 b (c) 38.9±0.8 (b) 41.1±1.2 (a) D10.96 31.1±1.1 (d) 36.1±1.7 b (c) 41.2±0.8 (b) 44.2±1.9 (a) 29.7±1.0 (d) 35.1±1.7 b (c) 40.1±1.0 (b) 42.8±1.7 (a) 表 5 马铃薯叶片光合特性与产量的相关性
Table 5. Correlation between photosynthetic characteristic and yield of winter potato plants
参数 Parameters 总产量 Total yield Pn Gs Ci Tr SPAD 总产量 Total yield 1 Pn 0.597** 1 Gs 0.453** 0.580** 1 Ci 0.330* 0.461** 0.473** 1 Tr 0.424** 0.576** 0.726** 0.288 1 SPAD 0.769** 0.620** 0.674** 0.377* 0.750** 1 注:样本量为36;* 和**分别表示相关性达5%和1%显著水平。
Note: n=36; * and ** indicates significant correlation at the 5% and 1% levels,respectively. -
[1] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望 [J]. 中国农业科学, 2017, 50(6):990−1015. doi: 10.3864/j.issn.0578-1752.2017.06.003XU J F, JIN L P. Advances and perspectives in research of potato genetics and breeding [J]. Scientia Agricultura Sinica, 2017, 50(6): 990−1015.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.06.003 [2] MULLINS E, MILBOURNE D, PETTI C, et al. Potato in the age of biotechnology [J]. Trends in Plant Science, 2006, 11(5): 254−260. doi: 10.1016/j.tplants.2006.03.002 [3] 屈冬玉, 谢开云, 金黎平, 等. 中国马铃薯产业发展与食物安全 [J]. 中国农业科学, 2005, 38(2):358−362. doi: 10.3321/j.issn:0578-1752.2005.02.022QU D Y, XIE K Y, JIN L P, et al. Development of potato industry and food security in China [J]. Scientia Agricultura Sinica, 2005, 38(2): 358−362.(in Chinese) doi: 10.3321/j.issn:0578-1752.2005.02.022 [4] 汤浩. 福建省马铃薯产业优势及发展对策 [J]. 中国马铃薯, 2010, 24(6):376−378. doi: 10.3969/j.issn.1672-3635.2010.06.016TANG H. Potato industrial actuality and development countermeasures in Fujian Province [J]. Chinese Potato Journal, 2010, 24(6): 376−378.(in Chinese) doi: 10.3969/j.issn.1672-3635.2010.06.016 [5] 徐亚新, 何萍, 仇少君, 等. 我国马铃薯产量和化肥利用率区域特征研究 [J]. 植物营养与肥料学报, 2019, 25(1):22−35. doi: 10.11674/zwyf.18018XU Y X, HE P, QIU S J, et al. Regional variation of yield and fertilizer use efficiency of potato in China [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 22−35.(in Chinese) doi: 10.11674/zwyf.18018 [6] ZHENG H L, LIU Y C, QIN Y L, et al. Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter [J]. Journal of Integrative Agriculture, 2015, 14(1): 190−195. doi: 10.1016/S2095-3119(14)60925-4 [7] 魏峭嵘, 曹敏建, 石瑛, 等. 氮素水平对马铃薯全生育期光合特性及产量的影响 [J]. 基因组学与应用生物学, 2017, 36(1):324−330.WEI Q R, CAO M J, SHI Y, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of potato in the whole growth period [J]. Genomics and Applied Biology, 2017, 36(1): 324−330.(in Chinese) [8] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade [J]. BioScience, 2003, 53(4): 341. doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 [9] 侯贤清, 牛有文, 吴文利, 等. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响 [J]. 作物学报, 2018, 44(10):1560−1569. doi: 10.3724/SP.J.1006.2018.01560HOU X Q, NIU Y W, WU W L, et al. Effect of planting density on the growth, water use efficiency and yield of dry-farming potato under different rainfall year types [J]. Acta Agronomica Sinica, 2018, 44(10): 1560−1569.(in Chinese) doi: 10.3724/SP.J.1006.2018.01560 [10] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响 [J]. 植物营养与肥料学报, 2017, 23(2):342−350. doi: 10.11674/zwyf.16280JIANG P, XIONG H, ZHANG L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342−350.(in Chinese) doi: 10.11674/zwyf.16280 [11] 魏淑丽, 王志刚, 于晓芳, 等. 施氮量和密度互作对玉米产量和氮肥利用效率的影响 [J]. 植物营养与肥料学报, 2019, 25(3):382−391. doi: 10.11674/zwyf.18084WEI S L, WANG Z G, YU X F, et al. Interaction of nitrogen fertilizer rate and plant density on grain yield and nitrogen use efficiency of maize [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 382−391.(in Chinese) doi: 10.11674/zwyf.18084 [12] FANG X M, LI Y S, NIE J, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) [J]. Field Crops Research, 2018, 219: 160−168. doi: 10.1016/j.fcr.2018.02.001 [13] LUO Z, LIU H, LI W P, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density [J]. Field Crops Research, 2018, 218: 150−157. doi: 10.1016/j.fcr.2018.01.003 [14] HOU W F, KHAN M R, ZHANG J L, et al. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice [J]. Agriculture, Ecosystems & Environment, 2019, 269: 183−192. [15] 于静, 熊兴耀, 高玉林, 等. 中国马铃薯不同产区氮肥利用率的比较分析 [J]. 中国蔬菜, 2019(7):43−50.YU J, XIONG X Y, GAO Y L, et al. Comparative analysis of nitrogen use efficiency in different potato production areas of China [J]. China Vegetables, 2019(7): 43−50.(in Chinese) [16] 谢从华, 陈耀华, 田恒林. 种植密度与马铃薯块茎大小的分布 Ⅰ.密度与块茎生长的关系 [J]. 中国马铃薯, 1991, 5(2):70−78.XIE C H, CHEN Y H, TIAN H L. Plant density and Tuber size distribution in potatoes: ⅰ.relationship between plant density and Tuber growth [J]. Chinese Potato Journal, 1991, 5(2): 70−78.(in Chinese) [17] LABOSKI C A M, KELLING K A. Influence of fertilizer management and soil fertility on Tuber specific gravity: a review [J]. American Journal of Potato Research, 2007, 84(4): 283−290. doi: 10.1007/BF02986240 [18] KELLING K A, ARRIAGA F J, LOWERY B, et al. Use of hill shape with various nitrogen timing splits to improve fertilizer use efficiency [J]. American Journal of Potato Research, 2015, 92(1): 71−78. doi: 10.1007/s12230-014-9413-9 [19] 祁驰恒, 魏峭嵘, 田洵, 等. 施氮量对马铃薯氮素积累分配及利用率的影响 [J]. 中国马铃薯, 2016, 30(3):158−163. doi: 10.3969/j.issn.1672-3635.2016.03.009QI C H, WEI Q R, TIAN X, et al. Effects of nitrogen application rate on nitrogen accumulation, distribution and utilization of potato [J]. Chinese Potato Journal, 2016, 30(3): 158−163.(in Chinese) doi: 10.3969/j.issn.1672-3635.2016.03.009 [20] 王秀斌, 徐新朋, 孙刚, 等. 氮肥用量对双季稻产量和氮肥利用率的影响 [J]. 植物营养与肥料学报, 2013, 19(6):1279−1286. doi: 10.11674/zwyf.2013.0601WANG X B, XU X P, SUN G, et al. Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1279−1286.(in Chinese) doi: 10.11674/zwyf.2013.0601 [21] 井涛, 樊明寿, 周登博, 等. 滴灌施氮对高垄覆膜马铃薯产量、氮素吸收及土壤硝态氮累积的影响 [J]. 植物营养与肥料学报, 2012, 18(3):654−661. doi: 10.11674/zwyf.2012.11329JING T, FAN M S, ZHOU D B, et al. Effects of nitrogen fertilization on potato Tuber yield, N uptake and soil NO3--N accumulation under plastic mulching with drip irrigation [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 654−661.(in Chinese) doi: 10.11674/zwyf.2012.11329