• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率的影响

许国春 李华伟 罗文彬 纪荣昌 林赵淼 李国良 许泳清 汤浩

许国春,李华伟,罗文彬,等. 密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率的影响 [J]. 福建农业学报,2020,35(4):406−413 doi: 10.19303/j.issn.1008-0384.2020.04.007
引用本文: 许国春,李华伟,罗文彬,等. 密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率的影响 [J]. 福建农业学报,2020,35(4):406−413 doi: 10.19303/j.issn.1008-0384.2020.04.007
XU G C, LI H W, LUO W B, et al. Effects of Planting Density and Nitrogen Application on Yield and Nitrogen Utilization of Winter Potato Plants [J]. Fujian Journal of Agricultural Sciences,2020,35(4):406−413 doi: 10.19303/j.issn.1008-0384.2020.04.007
Citation: XU G C, LI H W, LUO W B, et al. Effects of Planting Density and Nitrogen Application on Yield and Nitrogen Utilization of Winter Potato Plants [J]. Fujian Journal of Agricultural Sciences,2020,35(4):406−413 doi: 10.19303/j.issn.1008-0384.2020.04.007

密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率的影响

doi: 10.19303/j.issn.1008-0384.2020.04.007
基金项目: 福建省科技计划公益类专项(2019R1031-1);国家现代农业产业技术体系(福州综合试验站)建设专项(CARS-09-ES11);福建省种业创新与产业化工程项目(fjzycxny2017005);福建省农业科学院科技创新团队专项(STIT2017-2-3)
详细信息
    作者简介:

    许国春(1991−),男,硕士,研究实习员,主要从事薯类作物栽培生理研究(E-mail:xuguochun@faas.cn

    通讯作者:

    汤浩(1968−),男,研究员,主要从事薯类作物遗传育种研究(E-mail:tanghao9403@163.com

  • 中图分类号: S 532

Effects of Planting Density and Nitrogen Application on Yield and Nitrogen Utilization of Winter Potato Plants

  • 摘要:   目的  探讨密度与施氮及其互作对冬作马铃薯产量和氮肥农学利用率(AEN)的协同调控效应,为冬作马铃薯高产高效栽培提供理论参考和技术支撑。  方法  以冬作马铃薯主栽品种闽薯1号为材料,采用田间裂区试验设计,主区设3种密度(4.76万、6.67万和10.96 万株·hm−2,分别以D4.76、D6.67和D10.96表示),副区设4个施氮水平(0、75、150和300 kg·hm−2,分别以N0、N75、N150和N300表示),研究密度与施氮对冬作马铃薯产量、氮肥农学利用率(AEN)和叶片光合特性的影响。  结果  密度和施氮及其互作对马铃薯总产量和AEN均有显著影响,适当增密有利于提高马铃薯总产和AEN,其中D6.67处理产量最高,AEN则以D10.96处理最高。在N300水平下,D6.67和D10.96处理总产比D4.76处理分别提高21.3%和21.2%,AEN分别提高20.5%和49.2%,增幅比在其他施氮水平下明显,表明高氮水平下增密效果更显著。施氮显著提高了马铃薯产量,且在施氮量为150 kg·hm−2时产量最高。在D4.76和D6.67条件下,N75和N150处理产量差异不明显,但在D10.96条件下N75处理产量显著降低。AEN随施氮量增加明显下降,相比N75处理,N150和N300处理的AEN分别下降41.2%和75.2%。与不施氮相比,施氮显著提高了叶片气体交换参数和相对叶绿素含量SPAD,而高密种植不利于叶片光合效率的提高,D10.96处理叶片净光合速率Pn均低于D6.67处理。相关性分析发现,叶片光合特性与马铃薯总产量之间均呈显著正相关。  结论  在本试验条件下,6.67万株·hm−2和150 kg·hm−2的处理组合产量最高(32.2 t·hm−2),10.96万株·hm−2和75 kg·hm−2的处理组合AEN最高(156.5 kg·kg−1);高氮水平配合增密、中低密度配合减氮可作为协同提高冬作马铃薯产量和氮肥农学利用率的参考途径。
  • 图  1  密度与施氮对冬作马铃薯出苗率的影响

    注:不同小写字母表示处理间差异显著(P < 0.05) ,下同。

    Figure  1.  Effect of planting density and N input on seedling emergency ratio of winter potato plants

    Note: Different lowercase letters indicates significant difference between treatments at the 0.05 level. The same as below.

    图  2  密度与施氮对冬作马铃薯氮肥农学利用率的影响

    Figure  2.  Effect of planting density and N input on AEN of winter potato plants

    表  1  不同处理下马铃薯出苗率、产量和氮肥农学利用率的方差分析(F值)

    Table  1.   Variance analysis on seedling emergence, tuber yield, and AEN of potato plants under different treatments (F value)

    变异来源
    Sources of variation
    出苗率
    Emergence ratio
    总产量
    Total yield
    商品薯产量
    Commercial tuber yield
    非商品薯产量
    Noncommercial tuber yield
    商品薯率
    Commodity potato rate
    AEN
    D 26.8* 6.9* 3.1 34.4** 14.6* 13.5*
    N 431.0** 228.6** 166.3** 2.7 19.0** 650.0**
    D×N 4.8* 2.7* 3.3* 1.5 1.5 3.5*
    注:D、N和D×N分别表示密度、施氮及其互作;AEN表示氮肥农学利用率;* 和**分别表示差异达5%和1%显著水平。表3同。
    Note: D, N, and D×N indicate planting density, N fertilization, and interaction between D and N, respectively; AEN indicates N agronomic efficiency; *and** indicates significant differences at the 5% and 1% levels,respectively;. The same as Table 3.
    下载: 导出CSV

    表  2  密度氮肥互作对马铃薯产量的影响

    Table  2.   Interacting effect of planting density and N input on potato yield

    指标 Index处理 TreatmentsN0N75N150N300
    商品薯产量
    Commercial tuber yield/(t·hm−2
    D4.7613.4±1.4 (c)24.8±0.9 (ab)26.7±1.6 (a)22.6±2.3 b (b)
    D6.6716.4±1.7 (c)25.7±2.2 (b)28.7±2.3 (a)27.3±1.2 a (ab)
    D10.9612.7±0.9 (c)22.9±1.9 (b)26.3±1.2 (a)27.0±2.4 a (a)
    非商品薯产量
    Noncommercial tuber yield/(t·hm−2
    D4.763.4±0.6 b (a)3.2±0.6 b (a)2.8±0.8 b (a)3.1±0.7 (a)
    D6.674.0±0.8 ab (a)4.4±0.7 b (a)3.5±0.7 b (a)3.8±1.0 (a)
    D10.965.1±0.8 a (b)6.7±0.9 a (a)5.5±1.0 a (ab)4.2±0.9 (b)
    商品薯率
    Commodity potato rate/%
    D4.7679.6±4.0 a (b)88.5±1.8 a (a)90.4±3.1 a (a)87.6±3.4 (a)
    D6.6780.4±4.4 a (b)85.3±2.9 a (ab)89.1±2.5 a (a)87.7±3.3 (a)
    D10.9671.4±3.8 b (c)77.3±3.5 b (b)82.7±2.0 b (ab)86.4±3.6 (a)
    总产量
    Total yield/(t·hm−2
    D4.7616.8±1.4 b (c)28.1±1.4 (a)29.5±0.9 (a)25.7±1.4 b (b)
    D6.6720.4±1.3 a (b)30.1±1.5 (a)32.2±1.8 (a)31.2±0.7 a (a)
    D10.9617.8±1.0 ab (c)29.6±1.5 (b)31.8±2.1 (a)31.2±1.5 a (ab)
    注:同列数据后不同小写字母(括号外)表示同一施氮水平下不同密度间在0.05水平差异显著;同行数据后不同小写字母(括号内)表示同一密度条件下不同施氮处理间在0.05水平差异显著,未标注则表示处理间无显著差异。表4同。
    Note: Data with different bold letters on same column indicate significant difference at 0.05 level among different planting densities with a same N rate; data with different letters on same row(in parentheses)indicate significant difference at 0.05 level among different N rates under a same planting density; unmarked data indicate no significant difference between treatments. The same as Tbale 4.
    下载: 导出CSV

    表  3  不同处理下马铃薯叶片光合特性的方差分析(F值)

    Table  3.   Variance analysis on leaf photosynthetic traits of potato plants under different treatments(F value)

    变异来源
    Sources of variation
    现蕾期 Squaring period块茎膨大期 Tuber expansion period
    PnGsCiTrSPADPnGsCiTrSPAD
    D 5.31.60.50.510.4*10.6*3.718.0**18.7**9.7*
    N7.4**3.8**2.010.3**114.9**23.2**4.5*8.3**14.0**139.7**
    D×N1.21.00.30.42.9*1.82.13.2*0.63.4*
    下载: 导出CSV

    表  4  密度氮肥互作对冬作马铃薯叶片气体交换参数和SPAD的影响

    Table  4.   Interacting effects of planting density and N input on gas exchange and SPAD in leaves of potato plants

    指标
    Index
    处理
    Treatments
    现蕾期 Squaring period块茎膨大期 Tuber expansion period
    N0N75N150N300N0N75N150N300
    净光合速率/
    Pn(μmol CO2·m−2·s−1
    D4.7617.8±1.9 (b)22.4±1.6 a (a)21.7±2.1 (a)18.6±1.7 (b)17.7±0.6 a (b)18.1±1.3 (b)18.9±0.8 (b)21.4±2.9 (a)
    D6.6719.7±0.9 (b)21.5±1.9 ab (ab)23.6±2.4 (a)21.1±1.3 (ab)15.2±0.6 b (b)16.2±0.9 (b)19.8±0.2 (a)19.7±0.3 (a)
    D10.9616.9±1.518.1±1.9 b20.1±1.519.3±2.213.6±0.8 b (b)16.2±0.7 (a)17.6±1.3 (a)17.9±2.1 (a)
    气孔导度/
    Gs(mol·m−2·s−1
    D4.760.46±0.100.56±0.090.52±0.080.54±0.070.45±0.07 (b)0.53±0.08 a (ab)0.51±0.05 (ab)0.57±0.03 (a)
    D6.670.50±0.040.60±0.120.59±0.060.53±0.100.37±0.03 (bc)0.33±0.04 b (c)0.44±0.08 (ab)0.47±0.05 (a)
    D10.960.40±0.09 (b)0.46±0.09 (ab)0.47±0.07 (ab)0.55±0.09 (a)0.41±0.070.49±0.09 a0.51±0.090.44±0.07
    胞间CO2浓度/
    Ci(μmol·mol−1
    D4.76316.3±10.1323.7±13.6331.2±17.2322.8±10.0301.0±16.6 a305.9±9.3 a318.3±13.8313.1±3.6
    D6.67315.0±13.3339.1±18.8335.7±8.2329.9±6.5296.4±5.3 a308.2±10.4 a302.0±5.5309.7±10.2
    D10.96312.7±14.9334.5±34.0323.4±10.9328.3±21.7259.4±18.5 b (c)284.2±9.7 b (b)317.5±9.6 (a)286.7±6.3 (b)
    蒸腾速率
    Tr/(mmol·m−2·s−1
    D4.764.4±0.7 (b)5.2±0.4 (a)5.3±0.5 (a)5.3±0.5 (a)4.5±0.5 a (b)5.0±0.5 a (b)5.3±0.5 (ab)6.1±0.5 (a)
    D6.674.2±0.7 (b)4.6±0.4 (ab)5.0±0.7 (a)4.9±0.7 (a)3.6±0.3 b (c)3.8±0.4 b (bc)4.6±0.3 (ab)5.2±0.2 (a)
    D10.964.1±0.7 (c)4.4±0.8 (bc)5.2±1.0 (a)4.8±0.7 (ab)4.1±0.3 ab (b)4.8±0.1 a (ab)4.8±0.6 (ab)5.2±0.7 (a)
    SPADD4.7632.9±0.9 (b)39.9±1.0 a (a)42.1±1.6 (a)41.8±0.5 (a)31.7±0.6 (b)38.8±0.7 a (a)40.9±1.3 (a)40.6±0.7 (a)
    D6.6731.6±1.0 (c)36.4±1.4 b (b)40.0±0.9 (a)42.3±1.0 (a)30.2±1.0 (d)35.2±1.4 b (c)38.9±0.8 (b)41.1±1.2 (a)
    D10.9631.1±1.1 (d)36.1±1.7 b (c)41.2±0.8 (b)44.2±1.9 (a)29.7±1.0 (d)35.1±1.7 b (c)40.1±1.0 (b)42.8±1.7 (a)
    下载: 导出CSV

    表  5  马铃薯叶片光合特性与产量的相关性

    Table  5.   Correlation between photosynthetic characteristic and yield of winter potato plants

    参数 Parameters总产量 Total yieldPnGsCiTrSPAD
    总产量 Total yield1  
    Pn0.597**1  
    Gs0.453**0.580**1  
    Ci0.330*0.461**0.473**1  
    Tr0.424**0.576**0.726**0.2881  
    SPAD0.769**0.620**0.674**0.377*0.750**1  
    注:样本量为36;* 和**分别表示相关性达5%和1%显著水平。
    Note: n=36; * and ** indicates significant correlation at the 5% and 1% levels,respectively.
    下载: 导出CSV
  • [1] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望 [J]. 中国农业科学, 2017, 50(6):990−1015. doi: 10.3864/j.issn.0578-1752.2017.06.003

    XU J F, JIN L P. Advances and perspectives in research of potato genetics and breeding [J]. Scientia Agricultura Sinica, 2017, 50(6): 990−1015.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.06.003
    [2] MULLINS E, MILBOURNE D, PETTI C, et al. Potato in the age of biotechnology [J]. Trends in Plant Science, 2006, 11(5): 254−260. doi: 10.1016/j.tplants.2006.03.002
    [3] 屈冬玉, 谢开云, 金黎平, 等. 中国马铃薯产业发展与食物安全 [J]. 中国农业科学, 2005, 38(2):358−362. doi: 10.3321/j.issn:0578-1752.2005.02.022

    QU D Y, XIE K Y, JIN L P, et al. Development of potato industry and food security in China [J]. Scientia Agricultura Sinica, 2005, 38(2): 358−362.(in Chinese) doi: 10.3321/j.issn:0578-1752.2005.02.022
    [4] 汤浩. 福建省马铃薯产业优势及发展对策 [J]. 中国马铃薯, 2010, 24(6):376−378. doi: 10.3969/j.issn.1672-3635.2010.06.016

    TANG H. Potato industrial actuality and development countermeasures in Fujian Province [J]. Chinese Potato Journal, 2010, 24(6): 376−378.(in Chinese) doi: 10.3969/j.issn.1672-3635.2010.06.016
    [5] 徐亚新, 何萍, 仇少君, 等. 我国马铃薯产量和化肥利用率区域特征研究 [J]. 植物营养与肥料学报, 2019, 25(1):22−35. doi: 10.11674/zwyf.18018

    XU Y X, HE P, QIU S J, et al. Regional variation of yield and fertilizer use efficiency of potato in China [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 22−35.(in Chinese) doi: 10.11674/zwyf.18018
    [6] ZHENG H L, LIU Y C, QIN Y L, et al. Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter [J]. Journal of Integrative Agriculture, 2015, 14(1): 190−195. doi: 10.1016/S2095-3119(14)60925-4
    [7] 魏峭嵘, 曹敏建, 石瑛, 等. 氮素水平对马铃薯全生育期光合特性及产量的影响 [J]. 基因组学与应用生物学, 2017, 36(1):324−330.

    WEI Q R, CAO M J, SHI Y, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of potato in the whole growth period [J]. Genomics and Applied Biology, 2017, 36(1): 324−330.(in Chinese)
    [8] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade [J]. BioScience, 2003, 53(4): 341. doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
    [9] 侯贤清, 牛有文, 吴文利, 等. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响 [J]. 作物学报, 2018, 44(10):1560−1569. doi: 10.3724/SP.J.1006.2018.01560

    HOU X Q, NIU Y W, WU W L, et al. Effect of planting density on the growth, water use efficiency and yield of dry-farming potato under different rainfall year types [J]. Acta Agronomica Sinica, 2018, 44(10): 1560−1569.(in Chinese) doi: 10.3724/SP.J.1006.2018.01560
    [10] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响 [J]. 植物营养与肥料学报, 2017, 23(2):342−350. doi: 10.11674/zwyf.16280

    JIANG P, XIONG H, ZHANG L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342−350.(in Chinese) doi: 10.11674/zwyf.16280
    [11] 魏淑丽, 王志刚, 于晓芳, 等. 施氮量和密度互作对玉米产量和氮肥利用效率的影响 [J]. 植物营养与肥料学报, 2019, 25(3):382−391. doi: 10.11674/zwyf.18084

    WEI S L, WANG Z G, YU X F, et al. Interaction of nitrogen fertilizer rate and plant density on grain yield and nitrogen use efficiency of maize [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 382−391.(in Chinese) doi: 10.11674/zwyf.18084
    [12] FANG X M, LI Y S, NIE J, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) [J]. Field Crops Research, 2018, 219: 160−168. doi: 10.1016/j.fcr.2018.02.001
    [13] LUO Z, LIU H, LI W P, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density [J]. Field Crops Research, 2018, 218: 150−157. doi: 10.1016/j.fcr.2018.01.003
    [14] HOU W F, KHAN M R, ZHANG J L, et al. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice [J]. Agriculture, Ecosystems & Environment, 2019, 269: 183−192.
    [15] 于静, 熊兴耀, 高玉林, 等. 中国马铃薯不同产区氮肥利用率的比较分析 [J]. 中国蔬菜, 2019(7):43−50.

    YU J, XIONG X Y, GAO Y L, et al. Comparative analysis of nitrogen use efficiency in different potato production areas of China [J]. China Vegetables, 2019(7): 43−50.(in Chinese)
    [16] 谢从华, 陈耀华, 田恒林. 种植密度与马铃薯块茎大小的分布 Ⅰ.密度与块茎生长的关系 [J]. 中国马铃薯, 1991, 5(2):70−78.

    XIE C H, CHEN Y H, TIAN H L. Plant density and Tuber size distribution in potatoes: ⅰ.relationship between plant density and Tuber growth [J]. Chinese Potato Journal, 1991, 5(2): 70−78.(in Chinese)
    [17] LABOSKI C A M, KELLING K A. Influence of fertilizer management and soil fertility on Tuber specific gravity: a review [J]. American Journal of Potato Research, 2007, 84(4): 283−290. doi: 10.1007/BF02986240
    [18] KELLING K A, ARRIAGA F J, LOWERY B, et al. Use of hill shape with various nitrogen timing splits to improve fertilizer use efficiency [J]. American Journal of Potato Research, 2015, 92(1): 71−78. doi: 10.1007/s12230-014-9413-9
    [19] 祁驰恒, 魏峭嵘, 田洵, 等. 施氮量对马铃薯氮素积累分配及利用率的影响 [J]. 中国马铃薯, 2016, 30(3):158−163. doi: 10.3969/j.issn.1672-3635.2016.03.009

    QI C H, WEI Q R, TIAN X, et al. Effects of nitrogen application rate on nitrogen accumulation, distribution and utilization of potato [J]. Chinese Potato Journal, 2016, 30(3): 158−163.(in Chinese) doi: 10.3969/j.issn.1672-3635.2016.03.009
    [20] 王秀斌, 徐新朋, 孙刚, 等. 氮肥用量对双季稻产量和氮肥利用率的影响 [J]. 植物营养与肥料学报, 2013, 19(6):1279−1286. doi: 10.11674/zwyf.2013.0601

    WANG X B, XU X P, SUN G, et al. Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1279−1286.(in Chinese) doi: 10.11674/zwyf.2013.0601
    [21] 井涛, 樊明寿, 周登博, 等. 滴灌施氮对高垄覆膜马铃薯产量、氮素吸收及土壤硝态氮累积的影响 [J]. 植物营养与肥料学报, 2012, 18(3):654−661. doi: 10.11674/zwyf.2012.11329

    JING T, FAN M S, ZHOU D B, et al. Effects of nitrogen fertilization on potato Tuber yield, N uptake and soil NO3--N accumulation under plastic mulching with drip irrigation [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 654−661.(in Chinese) doi: 10.11674/zwyf.2012.11329
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  547
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 修回日期:  2020-03-29
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回