Mitigating Ill-effect of Plant Growth Regulator Overuse on Rice Plants by Piriformospora indica
-
摘要:
目的 植物生长调节剂过量使用会对植物的生长造成不利影响,严重情况下甚至抑制植物生长,而印度梨形孢(Piriformospora indica,简称Pi)是一种植物根部内生菌,能增强植物的抗逆能力,探究印度梨形孢对植物生长调节剂在水稻上过量使用的危害是否具有缓解作用可为缓解植物生长调节剂胁迫提供方法依据。 方法 利用国际水稻营养液培养水稻,施加过量植物生长调节剂(2,4-D或PP333),水培15 d后,分别测量各组水稻株高、根长、根数、根系活力及叶绿素含量,观察叶片ROS染色情况,分析在印度梨形孢是否接种的情况下,2,4-D或PP333对水稻叶片中抗氧化酶(SOD、POD、CAT)的活性变化影响。 结果 施加过量植物生长调节剂,水稻生长状况受到抑制,接种过印度梨形孢的水稻受影响较未接种小;+Pi、+2,4-D组与−Pi、+2,4-D组相比,株高增加26.02%,根长增加17.27%,根数增加30.77%,叶绿素含量增加64.71%,根系活力增加43.72%;+Pi、+PP333组与−Pi、+PP333组相比,株高增加36.79%,根系活力增加23.64%;接种印度梨形孢以及2,4-D或PP333处理,使水稻叶片中ROS含量增加;2,4-D或PP333处理使水稻SOD、POD、CAT活性升高,接种过印度梨形孢的水稻,抗氧化酶活性维持在正常水平。 结论 印度梨形孢对植物生长调节剂在水稻上过量使用具有缓解作用。植物生长调节剂过量使用的情况下,接种印度梨形孢的水稻株高增高、根系发达,植株整体发育比未接种印度梨形孢的水稻良好,印度梨形孢可能通过恢复水稻活性氧系统平衡,一定程度上减少水稻受植物生长调节剂过量使用的抑制作用。 Abstract:Objective Potential of applying an endophyte in plant roots, Piriformospora indica (Pi), to mitigate the ill-effect of excessive usage of plant growth regulators on rice paddies was investigated. Method Rice seedlings were hydroponically grown in a nutrient solution for 15 d. The height and chlorophyll content of the plants as well as the length, number, and vitality of the roots were monitored. ROS in the leaves was examined by a staining method. Effects of 2,4-D or PP333 treatment with or without Pi addition on the activities of antioxidant enzymes (i.e., SOD, POD, and CAT) in leaves were determined. Result Excessive applications of plant growth regulator can adversely affect or even retard the growth of rice plants. This study revealed that if a rice plant was inoculated with Pi it could become less vulnerable to the stress. Comparing 2,4-D treatment without Pi addition, the seedlings grew 26.02% taller, the roots 17.27% longer, the root count 30.77% more, the chlorophyll content 64.71% higher, and the root vitality 43.72% greater with the Pi addition. In the Pi+PP333 group, the plants were 36.79% taller and 23.64% higher in root vitality than without the presence of Pi. The leaf ROS of the rice seedlings increased with Pi, 2,4-D or PP333 in the nutrient solution. Either 2,4-D or PP333 treatment enhanced the SOD, POD and CAT activities, but the Pi inoculation did not exert any significant differences on them. Conclusion It appeared that P. indica could indeed alleviate the stress imposed on rice plants due to overuse of plant growth regulators. By inoculating Pi in the medium, the rice plants could overcome the interference by 2,4-D or PP333, grow well, and develop a robust root system. Restoration of the antioxidant system in rice by Pi might allow the plant to effectively mitigate the ill caused by over-exposure of plant growth regulators. -
表 1 水稻种子萌发处理
Table 1. Treatment of rice seeds germination
表 2 水稻幼苗处理
Table 2. Rice seedling culture
处理编号Treatment number 处理 Treatment 1 +Pi、+2,4-D 2 +Pi、-2,4-D 3 -Pi、+2,4-D 4 -Pi、-2,4-D a +Pi、+PP333 b +Pi、-PP333 c -Pi、+PP333 d -Pi、-PP333 表 3 印度梨形孢与2,4-D作用下的水稻相关生物性状
Table 3. Biological traits related to rice under Pi and 2,4-D
生物性状 Biological traits +Pi, +2,4-D +Pi, −2,4-D −Pi, +2,4-D −Pi, −2,4-D 株高 Plant height/cm 11.80±0.20 b 13.57±0.21 a 8.73±0.75 c 14.53±1.05 a 主根长 Main root length/cm 6.37±0.31 a 6.83±1.44 a 5.27±1.04 b 6.73±1.12 a 根数 Number of root 13.00±2.65 a 13.33±2.08 a 9.00±1.73 b 13.00±2.65 a 叶绿素含量 Chlorophyll content/(mg·g−1) 0.85±0.06 b 1.33±0.15 a 0.30±0.05 c 1.57±0.23 a 根系活力 Root vitality/(mg·g−1·h−1) 6.64±0.59 bc 15.38±2.30 a 4.62±0.85 c 7.70±0.82 b 注:同行数据后不同小写字母表示差异显著(P<0.05)。表4同。
Note: Data with lowercase letters on same line indicate significant differences(P<0.05). Same for Table 4.表 4 印度梨形孢与PP333作用下的水稻相关生物性状
Table 4. Biological traits related to rice plants treated with Pi+PP333
生物性状Biological traits +Pi, +PP333 +Pi, −PP333 −Pi, +PP333 −Pi, −PP333 株高 Plant height/cm 12.27±0.38 b 21.9±1.25 a 8.97±0.50 c 20.6±1.08 a 主根长 Main root length/cm 4.1±0.82 b 7.7±0.4 a 4.5±0.5 b 5.2±0.75 b 根数 Number of root 7.33±0.58 b 8.33±0.58 b 8±0.63 b 10.67±1.15 a 叶绿素含量 Chlorophyll content/(mg·g−1) 1.01±0.13 b 2.31±0.28 a 1.27±0.26 b 2.06±0.24 a 根系活力 Root vitality/(mg·g−1·h−1) 5.70±0.87 ab 7.99±1.26 a 4.61±1.59 bc 2.97±0.67 c -
[1] MWAJITA M R, MURAGE H, TANI A, et al. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters [J]. SpringerPlus, 2013, 2: 606−614. doi: 10.1186/2193-1801-2-606 [2] KAUR R, SINGH K, DEOL J S, et al. Possibilities of improving performance of direct seeded rice using plant growth regulators: a review [J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2015, 85(4): 909−922. doi: 10.1007/s40011-015-0551-8 [3] CHEN X P, YUAN H Y, CHEN R Z, et al. Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth Stimulator [J]. Plant and Cell Physiology, 2002, 43(8): 869−876. doi: 10.1093/pcp/pcf100 [4] 彭智平, 黄继川, 于俊红, 等. 多效唑和营养元素配施对水稻根系生长和产量的影响 [J]. 中国农学通报, 2011, 27(5):234−237.PENG Z P, HUANG J C, YU J H, et al. Effects of PP333 and nutrient elements applied on yields and root growth of rice [J]. Chinese Agricultural Science Bulletin, 2011, 27(5): 234−237.(in Chinese) [5] AKIYAMA T, JIN S, YOSHIDA M, et al. Expression of an endo-(1, 3;1, 4)-β-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings [J]. Journal of Plant Physiology, 2009, 166(16): 1814−1825. doi: 10.1016/j.jplph.2009.06.002 [6] KANEKO M, ITOH H, INUKAI Y, et al. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? [J]. The Plant Journal, 2003, 35(1): 104−115. doi: 10.1046/j.1365-313X.2003.01780.x [7] VERMA S, VARMA A, REXER K H, et al. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus [J]. Mycologia, 1998, 90(5): 896−903. [8] VARMA A, VERMA S, SUDHA, et al. Piriformospora indica, a cultivable plant-growth-promoting root endophyte [J]. Applied and Environmental Microbiology, 1999, 65(6): 2741−2744. doi: 10.1128/AEM.65.6.2741-2744.1999 [9] VARMA A, KOST G, OELMÜLLER R. Piriformospora indica[M]. Berlin: Springer Berlin Heidelberg, 2013. [10] YE W, SHEN C H, LIN Y L, et al. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica [J]. PLoS One, 2014, 9(1): e84920. doi: 10.1371/journal.pone.0084920 [11] ZAREA M J, HAJINIA S, KARIMI N, et al. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl [J]. Soil Biology and Biochemistry, 2012, 45: 139−146. doi: 10.1016/j.soilbio.2011.11.006 [12] WANG H L, ZHENG J R, REN X Y, et al. Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV [J]. Plant Growth Regulation, 2015, 76(3): 303−313. doi: 10.1007/s10725-015-0025-2 [13] JOHNSON J M, LEE Y C, CAMEHL I, et al. Piriformospora indica promotes growth of Chinese cabbage by manipulating auxin homeostasis: role of auxin in P. indica symbioses[C]//Varma A. et al. Piriformospora indica, Soil Biology 33. Berlin: Springer Berlin Heidelberg, 2013: 139-147. [14] SCHUCK S, CAMEHL I, GILARDONI P A, et al. HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus Piriformospora indica [J]. Plant Physiology, 2012, 160(2): 929−943. doi: 10.1104/pp.112.203976 [15] 韦巧, 武美燕, 张文英. 不同磷水平下印度梨形孢对生菜生长及磷素吸收利用的影响 [J]. 河南农业科学, 2017, 46(1):100−104.WEI Q, WU M Y, ZHANG W Y. Effects of Piriformospora indica on growth and phosphorus absoption of lettuce under different phosphorus levels [J]. Journal of Henan Agricultural Sciences, 2017, 46(1): 100−104.(in Chinese) [16] 王衬, 毛黎娟, 惠非琼, 等. 不同氮素水平下内生真菌印度梨形孢定殖对烟草生长发育及物质代谢的影响 [J]. 烟草科技, 2014, 47(5):76−81, 98. doi: 10.3969/j.issn.1002-0861.2014.05.017WANG C, MAO L J, HUI F Q, et al. Effects of endophytic fungus Piriformospora indica on growth and metabolism of tobacco at different levels of nitrogen nutrition [J]. Tobacco Science & Technology, 2014, 47(5): 76−81, 98.(in Chinese) doi: 10.3969/j.issn.1002-0861.2014.05.017 [17] WALLER F, ACHATZ B, BALTRUSCHAT H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(38): 13386−13391. doi: 10.1073/pnas.0504423102 [18] SUN C, JOHNSON J M, CAI D G, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein [J]. Journal of Plant Physiology, 2010, 167(12): 1009−1017. doi: 10.1016/j.jplph.2010.02.013 [19] 舒珊, 高中南, 袁听, 等. 印度梨形孢最适培养基的筛选及其对水稻的促生作用研究 [J]. 福建农业学报, 2019, 34(2):155−161.SHU S, GAO Z N, YUAN T, et al. Optimized culture medium and effect of Piriformospora indica on growth of rice plants [J]. Fujian Journal of Agricultural Sciences, 2019, 34(2): 155−161.(in Chinese) [20] 刘雪琳, 朱志炎, 何勇, 等. 内生真菌印度梨形孢对水稻苗期耐盐性的影响 [J]. 南方农业学报, 2019, 50(4):719−725. doi: 10.3969/j.issn.2095-1191.2019.04.06LIU X L, ZHU Z Y, HE Y, et al. Effects of endophytic fungus Piriformospora indica on salt stress tolerance of rice seedling [J]. Journal of Southern Agriculture, 2019, 50(4): 719−725.(in Chinese) doi: 10.3969/j.issn.2095-1191.2019.04.06 [21] 韦巧, 武美燕, 张文英, 等. 内生真菌印度梨形孢对旱稻苗期生长及抗旱性的影响 [J]. 生态学杂志, 2018, 37(9):2642−2648.WEI Q, WU M Y, ZHANG W Y, et al. Effect of the endophytic fungus Piriformospora indica on the growth and drought tolerance of rice seedling under drought stress [J]. Chinese Journal of Ecology, 2018, 37(9): 2642−2648.(in Chinese) [22] VERGARA C, ARAUJO K E C, ALVES L S, et al. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants [J]. Brazilian Journal of Microbiology, 2018, 49(1): 67−78. doi: 10.1016/j.bjm.2017.04.010 [23] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164−169. [24] ZHU J K. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313−324. doi: 10.1016/j.cell.2016.08.029 [25] 张洪昌, 李星林. 植物生长调节剂使用手册[M]. 北京: 中国农业出版社, 2011: 40, 146. [26] SONG Y L. Insight into the mode of action of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as an herbicide [J]. Journal of Integrative Plant Biology, 2014, 56(2): 106−113. doi: 10.1111/jipb.12131 [27] 安小龙, 梅兰菊, 唐琳, 等. 多效唑对水涝胁迫下麻疯树幼苗生理指标的影响 [J]. 四川大学学报(自然科学版), 2015, 52(5):1171−1176.AN X L, MEI L J, TANG L, et al. The effects of paclobutrazol to Jatropha curcas seedlings under water logging on physiologic index [J]. Journal of Sichuan University(Natural Science Edition), 2015, 52(5): 1171−1176.(in Chinese) [28] 林瑞. 多效唑对杨梅凋萎病病菌及其病害发生的影响[D]. 金华: 浙江师范大学, 2019.LIN R. Effects of paclobutrazol on the twig blight of bayberry and its disease occurrence[D]. Jinhua: Zhejiang Normal University, 2019.(in Chinese) [29] ISLAM F, FAROOQ M A, GILL R A, et al. 2, 4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars [J]. Scientific Reports, 2017, 7: 10443−10466. doi: 10.1038/s41598-017-09708-x [30] ISLAM F, ALI B, WANG J, et al. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars [J]. Plant Physiology and Biochemistry, 2016, 107: 82−95. doi: 10.1016/j.plaphy.2016.05.027 [31] ISLAM F, WANG J, FAROOQ M A, et al. Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems [J]. Environment International, 2018, 111: 332−351. doi: 10.1016/j.envint.2017.10.020 [32] MITTLER R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9 [33] ALGUACIL M M, HERNANDEZ J A, CARAVACA F, et al. Antioxidant enzyme activities in shoot from three mycorrhizal shrub species afforested in a degraded semi-arid soil [J]. Physiologia Plantarum, 2003, 118(4): 562−570. doi: 10.1034/j.1399-3054.2003.00149.x