Effects of Funneliformis mosseae Application on Nitrogen Utilization by Sweet Corn and AM Fungi Diversity in soil
-
摘要:
目的 研究增施摩西管柄囊霉(Funneliformis mosseae)对甜玉米氮肥减量效果及根际土壤AM真菌多样性的影响,揭示AM真菌对甜玉米氮肥减量增效的土壤微生物学机制,为AM真菌在甜玉米氮肥减量上的推广应用提供参考。 方法 试验共设4个施氮水平:(1)不施氮肥(N0);(2)优化施肥,施氮肥330 kg·hm−2(N22);(3)优化施肥减氮10%,施氮肥297 kg·hm−2(N19.8);(4)优化施肥减氮20%,施氮肥264 kg·hm−2(N17.6)。同一施氮水平下设增施摩西管柄囊霉315 kg·hm−2和不增施2个裂区,试验共8个处理3个重复。利用土壤常规理化分析方法和Illumina Hiseq 2500测序平台,对8个处理甜玉米根际土壤氮肥增效及AM真菌进行扩增子测序,进而对AM真菌的群落结构多样性进行分析。 结果 增施摩西管柄囊霉处理,在N0、N17.6、N19.8和N22等4个施氮水平上,甜玉米鲜苞产量较不施菌裂区组分别增加了32.6%、16.7%、8.0%和0.8%,氮素生理利用率较不施菌裂区组分别增加了5.51%、4.14%、6.19%。通过Illumina Hiseq 2500测序平台共获得1 558 461个有效序列,在97%的相似水平下聚类后获得15 771个OTUs,分属于1纲4目5科5属。在属水平上,球囊霉属(Glomus)、近明球囊霉属(Claroideoglomus)和类球囊霉属(Paraglomus)是8个处理共有的菌属,其中,球囊霉属是8个处理的优势菌属,占各处理相对丰度≥1%物种的21.82%以上。N22AM处理的Chao1和Richness指数显著高于其他处理(P<0.05),而N0AM处理的Dominance指数最大,Shannon指数和Simpson指数最小。增施摩西管柄囊霉后,显著增加了Shannon指数、Simpson指数与侵染率、孢子密度和4种氮素利用率(NAE、PFP、NRE、NPE)之间的相关性(P<0.05)。 结论 增施摩西管柄囊霉可显著提高甜玉米的氮肥利用效率,改变AM真菌群落结构,提高甜玉米产量,是甜玉米氮肥减量的有效途径。 Abstract:Objective By adding Funneliformis mosseae to the sweet corn field, roles of AM fungi play on the nitrogen (N) utilization and the fungal diversity in rhizosphere soil were studied. Method Various N applications including no N (N0), 330 kg N·hm−2 (N22), 297 kg N·hm−2 (N19.8), and 264 kg N·hm−2 (N17.6) were used. In addition, at a same level of N, two split-plots with (AM+) or without (AM-) 315 kg·hm−2 of F. mosseae were included for the experimentation. Thus, 8 treatments with 3 replicates each were performed. Rhizosphere soil were sampled for chemical analysis and Illumina Hiseq 2500 sequencing to determine the diversity and community structure of the AM fungi. Result Among the AM+ treatments, the fresh bud yield of the corn plants increased by 32.6% at N0, 16.7% at N17.6, 8.0% at N19.8, and 0.8% at N22. In comparison to AM-, the N utilization of the plants on the AM+ plots with N17.6, N19.8, and N22 improved by 5.51%, 4.14%, and 6.19%, respectively. From the 1 558 461 valid sequences obtained, 15 771 OTUs were clustered at 97% similarity level to show a result of one class, 4 orders, 5 families, and 5 genera. Among the common genera, Glomus, Claroideoglomus, and Paraglomus, Glomus predominantly presented in the rhizosphere accounting for more than 21.82% of all species with a relative abundance ≥1%. The N22/AM+ treatment yielded higher Chao1 and richness indices than others (P<0.05). The greatest abundance index as well as the lowest Shannon and Simpson indices were found with the N0/AM+ treatment. The addition of F. mosseae significantly increased the correlations between Shannon index, Simpson index and infection rate, spore density, and utilization rates of 4 types of N (NAE, PFP, NRE, and NPE) (P<0.05). Conclusion The addition of F. mosseae in corn field altered the AM fungal community in the rhizosphere resulting in an increased crop yield. This study confirmed the significant promotional effect of AM fungi on the N utilization efficiency by sweet corn plants, which would effectively reduce the need for N fertilizer in the field. -
Key words:
- sweet corn /
- Funneliformis mosseae /
- rhizosphere soil /
- AM fungi diversity /
- nitrogen utilization rate
-
表 1 不同处理甜玉米的侵染率、侵染强度和土壤孢子密度
Table 1. Infection rate and intensity of sweet corn plants and spore density in soil under various treatments
处理 Treatment 侵染率 Colonization/% 侵染强度 Colonization intensity/% 孢子密度 Spore density/(个·g−1) AMF− N0 58.00 d 22.5 h 7.1 h N17.6 68.00 c 39.42 c 14.4 f N19.8 78.67 b 37.82 d 18.8 e N22 64.67 cd 26.92 g 13.0 g AMF+ N0AM 81.00 b 45.34 b 24.5 d N17.6AM 84.33 b 30.11 f 33.8 b N19.8AM 93.00 a 36.75 e 38.9 a N22AM 84.67 b 48.31 a 28.27 c P值 差异显著性 Significance AMF <0.001 <0.001 <0.001 氮素水平(N) <0.001 <0.001 <0.001 AMF×N 0.409 <0.001 <0.001 注:孢子密度按每克干土计;同列数据后不同字母表示各处理差异达5%显著水平。表2、3同。
Note:Spore density shown as count/g dry soil; data followed by different small letters mean significant differences at 0.05 level. The same as table 2 and table 3.表 2 不同处理的甜玉米氮素利用效率
Table 2. N utilization efficiencies of sweet corn plants grown under various treatments
处理 Treatment 氮肥农学效率 NAE/
(kg·kg−1)氮肥偏生产力 PFP/
(kg·kg−1)氮肥吸收利用率 NRE/% 氮素生理利用率 NPE/(kg·kg−1) AMF− N0 - - - - N17.6 13.35±1.84 d 40.95±0.73 c 36.77±1.99 b 36.21±3.11 b N19.8 23.43±2.67 bc 47.97±1.68 b 32.40±4.67 b 72.68±6.69 a N22 27.30±2.69 ab 49.39±1.82 ab 35.80±5.09 bc 72.39±7.53 a AMF+ N0AM - - - 69.46±12.12 a N17.6AM 20.19±3.68 c 47.80±2.58 b 48.26±2.60 a 41.72±6.33 b N19.8AM 27.28±0.55 ab 51.82±1.51 a 40.60±2.77 b 76.82±4.97 a N22AM 27.71±2.18 a 49.79±2.99 ab 37.80±2.34 bc 78.58±16.16 a P值 差异显著性 Significance AMF 0.003 0.001 <0.001 <0.001 氮素水平(N) <0.001 <0.001 <0.001 <0.001 AMF×N 0.022 0.008 0.006 <0.001 表 3 土壤样品的AM真菌α多样性指数分析
Table 3. Diversity indices of AM fungi in soil samples
处理 Treatment Chao1 Richness Dominance Shannon Simpson AMF− N0 764.35 bc 628.00 b 0.091 b 4.96 a 0.909 a N17.6 749.79 bc 630.67 b 0.050 c 5.59 a 0.951 a N19.8 862.20 a 673.67 ab 0.054 c 5.52 a 0.946 a N22 652.53 d 510.67 c 0.051 c 5.40 a 0.936 a AMF+ N0AM 699.31 cd 557.33 c 0.164 a 4.09 b 0.849 b N17.6AM 772.54 b 650.00 ab 0.069 bc 4.82 a 0.931 a N19.8AM 778.97 b 649.00 ab 0.062 bc 5.36 a 0.938 a N22AM 873.95 a 702.67 a 0.063 bc 5.35 a 0.935 a P值 差异显著性 Significance AMF 0.135 0.049 0.001 0.012 0.025 氮素水平(N) 0.006 0.010 <0.001 0.004 <0.001 AMF×N <0.001 <0.001 0.021 0.212 0.126 注:Chao1指数、Richness指数为菌群丰富度指数,可间接反映样品中物种的丰富程度。Dominance指数、Shannon指数、Simpson指数菌群多样性指数,可间接反映样品中群落多样性的高低。
Note: Chao1 and richness indices indirectly reflect species richness in a specimen; dominion index, Shannon index, and Simpson index indirectly reflect community diversity in a specimen.表 4 AM真菌多样性指数与菌根侵染率、土壤孢子密度和氮素利用率之间的关系
Table 4. Relationship between AM fungal diversity index and mycorrhizal infection rate, spore density, and N utilization rate of soil
处理
Treatment指数
Index相关系数 r 侵染率
Colonization孢子密度
Spore densityNAE PFP NRE NPE AMF− Shannon指数 0.386 0.476 0.443 0.513 0.532 0.414 Simpson指数 0.445 0.541 0.469 0.564 0.589* 0.437 AMF+ Shannon指数 0.646* 0.622* 0.905** 0.842** 0.727** 0.888** Simpson指数 0.579* 0.725** 0.940** 0.936** 0.912** 0.875** 注:*和** 分别表示在0.05和0.01水平显著相关。
Note: * and ** indicate significant correlation at 0.05 and 0.01 level, respectively. -
[1] 刘永俊, 石国玺, 毛琳, 等. 施肥对垂穗披碱草根系中丛枝菌根真菌的影响 [J]. 应用生态学报, 2011, 22(12):3131−3137.LIU Y J, SHI G X, MAO L, et al. Effects of fertilization on arbuscular mycorrhizal fungi in Elymus nutans roots [J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3131−3137.(in Chinese) [2] 刘润进. 菌根真菌是唱响生物共生交响曲的主角: 菌根真菌专辑序言 [J]. 菌物学报, 2017, 36(7):791−799.LIU R J. Mycorrhizal fungi are the main actor of singing biological symbiosis symphony [J]. Mycosystema, 2017, 36(7): 791−799.(in Chinese) [3] 宋福强, 刘宇飞, 范晓旭. 耕种措施对农田生态系统AM真菌群落结构的影响 [J]. 菌物学报, 2018, 37(8):988−998.SONG F Q, LIU Y F, FAN X X. Effects of cultivation measures on AM fungal community structure in agro-ecological system [J]. Mycosystema, 2018, 37(8): 988−998.(in Chinese) [4] 张淑娟, 王立, 马放, 等. 丛枝菌根(AM)对水稻生长促进及化肥减量研究 [J]. 哈尔滨工业大学学报, 2010, 42(6):958−962. doi: 10.11918/j.issn.0367-6234.2010.06.028ZHANG S J, WANG L, MA F, et al. Application of arbuscular mycorrhiza on promoting the growth of rice and reducing the usage of chemical fertilizer [J]. Journal of Harbin Institute of Technology, 2010, 42(6): 958−962.(in Chinese) doi: 10.11918/j.issn.0367-6234.2010.06.028 [5] 韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控 [J]. 生态学报, 2016, 36(14):4233−4243.WEI L L, LU C Y, DING J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system [J]. Acta Ecologica Sinica, 2016, 36(14): 4233−4243.(in Chinese) [6] 伍荣冬, 谭彩丽, 李廷化, 等. 大田接种丛枝菌根真菌对甘蔗品种“福农41号”生长的影响 [J]. 甘蔗糖业, 2015(4):20−23. doi: 10.3969/j.issn.1005-9695.2015.04.005WU R D, TAN C L, LI T H, et al. Influence of inoculation of arbuscular mycorrhizal fungi on sugarcane variety funong 41 grown in field [J]. Sugarcane and Canesugar, 2015(4): 20−23.(in Chinese) doi: 10.3969/j.issn.1005-9695.2015.04.005 [7] 张金莲, 黄振瑞, 车江旅, 等. AM菌剂对大田甘蔗根际土壤AM真菌种群影响 [J]. 西南农业学报, 2015, 28(1):269−273.ZHANG J L, HUANG Z R, CHE J, et al. Effcet of arbuscular mycorrhizal(AM) inoculum application on sugarcane rhizosphere AM fungi communities [J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 269−273.(in Chinese) [8] 赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响 [J]. 植物生理学报, 2014, 50(2):164−170.ZHAO Q H, SUN L T, WANG Y, et al. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis(L.) O. kuntze [J]. Plant Physiology Journal, 2014, 50(2): 164−170.(in Chinese) [9] 赵乾旭, 岳献荣, 夏运生, 等. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响 [J]. 作物杂志, 2016(5):94−100.ZHAO Q X, YUE X R, XIA Y S, et al. Effects of arbuscular mycorrhizal fungus inoculation on growth and nitrogen utilization of intercropped maize and soybean in purple soil under facilitated condition [J]. Crops, 2016(5): 94−100.(in Chinese) [10] 刘铭铭, 李衍素, 孙锦, 等. 两种丛枝菌根真菌扩繁比较及其对玉米促生的研究 [J]. 农业科技通讯, 2018(4):63−67. doi: 10.3969/j.issn.1000-6400.2018.04.026LIU M M, LI Y S, SUN J, et al. Comparison of two arbuscular mycorrhizal fungi and their effects on maize growth [J]. Agricultural Science and Technology Communication, 2018(4): 63−67.(in Chinese) doi: 10.3969/j.issn.1000-6400.2018.04.026 [11] 毕银丽, 孙欢, 郭楠, 等. 不同基质和菌种组合对丛枝菌根真菌扩繁效果的影响 [J]. 应用与环境生物学报, 2017, 23(4):616−621.BI Y L, SUN H, GUO N, et al. Propagate-effects of different substrates and strain combinations on arbuscular mycorrhizal fungi [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 616−621.(in Chinese) [12] ZHAO Y P, LIN S, CHU L X, et al. Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla [J]. Scientific Reports, 2016, 6: 26175. doi: 10.1038/srep26175 [13] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [15] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. [16] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970, 55(1): 158−IN18. doi: 10.1016/S0007-1536(70)80110-3 [17] GERDEMANN J W, NICOLSON T H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting [J]. Transactions of the British Mycological Society, 1963, 46(2): 235−244. doi: 10.1016/S0007-1536(63)80079-0 [18] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000. [19] BAN Y H, JIANG Y H, LI M, et al. Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi [J]. Chemosphere, 2017, 181: 699−709. doi: 10.1016/j.chemosphere.2017.04.135 [20] 李伟, 李絮花, 李海燕, 等. 控释尿素与普通尿素混施对夏玉米产量和氮肥效率的影响 [J]. 作物学报, 2012, 38(4):699−706.LI W, LI X H, LI H Y, et al. Effects of different mixing rates of controlled-release urea and common urea on grain yield and nitrogen use efficiency of summer maize [J]. Acta Agronomica Sinica, 2012, 38(4): 699−706.(in Chinese) [21] 鲁艳红, 聂军, 廖育林, 等. 不同控释氮肥减量施用对双季水稻产量和氮素利用的影响 [J]. 水土保持学报, 2016, 30(2):155−161, 174.LU Y H, NIE J, LIAO Y L, et al. Effects of application reduction of controlled release nitrogen fertilizer on yield of double cropping rice and nitrogen nutrient uptake [J]. Journal of Soil and Water Conservation, 2016, 30(2): 155−161, 174.(in Chinese) [22] 黄巧义, 唐拴虎, 张发宝, 等. 控释尿素与常规尿素配施比例对甜玉米产量和氮肥利用的影响 [J]. 植物营养与肥料学报, 2017, 23(3):622−631. doi: 10.11674/zwyf.16298HUANG Q Y, TANG S H, ZHANG F B, et al. Effect of the blending ratio of controlled-release urea and conventional urea on yield and nitrogen utilization efficiency of sweet corn [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 622−631.(in Chinese) doi: 10.11674/zwyf.16298 [23] TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d’un systemeradiculaire. Recherche de methods d’estimationayantune signification fonctionnelle [J]. Physiological and Genetical Aspects of Mycorrhizae, Inra, Paris, 1986: 217−221. [24] YATES M D, KIELY P D, CALL D F, et al. Convergent development of anodic bacterial communities in microbial fuel cells [J]. The ISME Journal, 2012, 6(11): 2002−2013. doi: 10.1038/ismej.2012.42 [25] 马凤娟, 孙杰, 徐培智, 等. 生防菌XP1对香蕉枯萎病防效及土壤细菌群落多样性的影响 [J]. 南方农业学报, 2019, 50(9):1981−1989.MA F J, SUN J, XU P Z, et al. Effects of biocontrol bacteria XP1 on banana Fusarium wilt and diversity of bacterial community in soil [J]. Journal of Southern Agriculture, 2019, 50(9): 1981−1989.(in Chinese) [26] 何斌, 李青, 薛晓辉, 等. 草海国家级自然保护区森林群落结构及物种多样性研究 [J]. 福建农业学报, 2019, 34(11):1332−1341.HE B, LI Q, XUE X H, et al. Composition and diversity of forests at Caohai national nature reserve [J]. Fujian Journal of Agricultural Sciences, 2019, 34(11): 1332−1341.(in Chinese) [27] 王淼焱, 徐倩, 刘润进. 长期定位施肥土壤中AM真菌对寄主植物的侵染状况 [J]. 菌物学报, 2006, 25(1):131−137.WANG M Y, XU Q, LIU R J. Colonization status of arbuscular mycorrhizal fungi on host plants grown in long-term fixed fertilization field [J]. Mycosystema, 2006, 25(1): 131−137.(in Chinese) [28] 田慧, 盖京苹, 李晓林, 等. 农田土著丛枝菌根真菌群落特征和磷吸收作用研究进展 [J]. 土壤通报, 2013, 44(6):1512−1519.TIAN H, GAI J P, LI X L, et al. Community composition and phosphorus uptake by indigenous arbuscular mycorrhizal fungi in agroecosystems [J]. Chinese Journal of Soil Science, 2013, 44(6): 1512−1519.(in Chinese) [29] CAMENZIND T, HEMPEL S, HOMEIER J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest [J]. Global Change Biology, 2014, 20(12): 3646−3659. doi: 10.1111/gcb.12618 [30] DELOWARN K, MRIDHA M A U, SOLAIMAN A R M. Effect of edaphic factors on root colonization and spore population of arbuscular mycorrhizal fungi [J]. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 2006, 29: 97−104. [31] 任爱天, 鲁为华, 杨洁晶, 等. 石河子绿洲区苜蓿地丛枝菌根真菌的多样性及与土壤因子的关系 [J]. 草业科学, 2014, 31(9):1666−1672. doi: 10.11829/j.issn.1001-0629.2013-0624REN A T, LU W H, YANG J J, et al. Arbuscular mycorrhizal fungi diversity and its relationship with soil environmental factors in oasis alfalfa planting of Shihezi [J]. Pratacultural Science, 2014, 31(9): 1666−1672.(in Chinese) doi: 10.11829/j.issn.1001-0629.2013-0624 [32] 姜德锋, 蒋家慧, 李敏, 等. AM菌对玉米某些生理特性和籽粒产量的影响 [J]. 中国农业科学, 1998, 31(1):15−20.JIANG D F, JIANG J H, LI M, et al. Effects of arbuscular mycorrhizal fungi on physiological characteristics and grain yield of maize [J]. Scientia Agricultura Sinica, 1998, 31(1): 15−20.(in Chinese) [33] 罗广宁, 韦爱梅, 彭中健. AM菌对玉米的增效作用研究 [J]. 广东农业科学, 2004, 31(5):50−51. doi: 10.3969/j.issn.1004-874X.2004.05.021LUO G N, WEI A M, PENG Z J. Study on synergism of AM bacteria on maize [J]. Guangdong Agricultural Science, 2004, 31(5): 50−51.(in Chinese) doi: 10.3969/j.issn.1004-874X.2004.05.021 [34] 李芳, 徐丽娇, 谢伟, 等. 菌根化育苗对玉米生长和养分吸收的影响 [J]. 植物营养与肥料学报, 2020, 26(1):42−50. doi: 10.11674/zwyf.19084LI F, XU L J, XIE W, et al. Effects of seedling mycorrhization on the growth and nutrient uptake of maize [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 42−50.(in Chinese) doi: 10.11674/zwyf.19084 [35] 江彬, 毕银丽, 申慧慧, 等. 氮营养与AM真菌协同对玉米生长及土壤肥力的影响 [J]. 江苏农业学报, 2017, 33(2):327−332. doi: 10.3969/j.issn.1000-4440.2017.02.014JIANG B, BI Y L, SHEN H H, et al. Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility [J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(2): 327−332.(in Chinese) doi: 10.3969/j.issn.1000-4440.2017.02.014 [36] BAREA J M, JEFFRIES P. Arbuscular mycorrhizas in sustainable soil-plant systems[M]//Mycorrhiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995: 521-560. [37] JOHANSEN A, JENSEN E S. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus [J]. Soil Biology and Biochemistry, 1996, 28(1): 73−81. doi: 10.1016/0038-0717(95)00117-4 [38] 郭鹏, 贺学礼. AM真菌对草莓的接种效应研究 [J]. 河北农业大学学报, 2006, 29(4):53−56. doi: 10.3969/j.issn.1000-1573.2006.04.013GUO P, HE X L. Inoculation effect of arbuscular mycorrhizal fungi for strawberry [J]. Journal of Agricultural University of Hebei, 2006, 29(4): 53−56.(in Chinese) doi: 10.3969/j.issn.1000-1573.2006.04.013 [39] HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of Ammonia-oxidizing bacteria and Ammonia-oxidizing Archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environmental Microbiology, 2007, 9(9): 2364−2374. doi: 10.1111/j.1462-2920.2007.01358.x [40] 裴雪霞, 周卫, 梁国庆, 等. 长期施肥对黄棕壤性水稻土氨氧化细菌多样性的影响 [J]. 植物营养与肥料学报, 2011, 17(3):724−730. doi: 10.11674/zwyf.2011.0121PEI X X, ZHOU W, LIANG G Q, et al. Effects of long-term fertilization on ammonium oxidizing bacterial diversity in a paddy soil derived from yellow-brown earth [J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 724−730.(in Chinese) doi: 10.11674/zwyf.2011.0121 [41] 魏巍, 许艳丽, 朱琳, 等. 长期施肥对黑土农田土壤微生物群落的影响 [J]. 土壤学报, 2013, 50(2):372−380. doi: 10.11766/trxb201202290053WEI W, XU Y L, ZHU L, et al. Effect of long-term fertilization on soil microbial communities in farmland of black soil [J]. Acta Pedologica Sinica, 2013, 50(2): 372−380.(in Chinese) doi: 10.11766/trxb201202290053 [42] 蒋雨含. 长期不同施肥处理对设施番茄生长及丛枝菌根真菌群落的影响[D]. 沈阳: 沈阳农业大学, 2019.JIANG Y H. Effects of long-term fertilization on Toma toGrowth and arbuscular mycorrhizal fungal communities in intensive agroecosystems[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) [43] 李冬冬, 罗培宇, 韩晓日, 等. 长期不同施肥对棕壤AM真菌群落结构的影响 [J]. 植物营养与肥料学报, 2018, 24(3):651−660. doi: 10.11674/zwyf.17364LI D D, LUO P Y, HAN X R, et al. Influence of long-term fertilization on structures of arbuscular mycorrhizal fungi community in a brown soil [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 651−660.(in Chinese) doi: 10.11674/zwyf.17364 [44] RAUN W R, JOHNSON G V. Improving nitrogen use efficiency for cereal production [J]. Agronomy Journal, 1999, 91(3): 357−363. doi: 10.2134/agronj1999.00021962009100030001x [45] OEHL F, SIEVERDING E, INEICHEN K, et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe [J]. Applied and Environmental Microbiology, 2003, 69(5): 2816−2824. doi: 10.1128/AEM.69.5.2816-2824.2003 [46] 郝杰, 杨茜, 吴红红, 等. 施氮对黄土高原旱地小麦根际AMF群落结构的影响 [J]. 山西农业科学, 2019, 47(5):829−835. doi: 10.3969/j.issn.1002-2481.2019.05.29HAO J, YANG X, WU H H, et al. Effects of nitrogen application on AMF community structure in rhizosphere of wheat in dryland of loess plateau [J]. Journal of Shanxi Agricultural Sciences, 2019, 47(5): 829−835.(in Chinese) doi: 10.3969/j.issn.1002-2481.2019.05.29 [47] 宋福强, 程蛟, 常伟, 等. 黑土农田施加AM菌剂对大豆根际菌群结构的影响 [J]. 土壤学报, 2015, 52(2):390−398.SONG F Q, CHENG J, CHANG W, et al. Impact of inoculation with am fungi on microbial community structure in soybean rhizosphere in farmland of black soil [J]. Acta Pedologica Sinica, 2015, 52(2): 390−398.(in Chinese) [48] 王庆峰, 姜昕, 马鸣超, 等. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响 [J]. 中国农业科学, 2018, 51(17):3315−3324. doi: 10.3864/j.issn.0578-1752.2018.17.007WANG Q F, JIANG X, MA M C, et al. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of northeast China [J]. Scientia Agricultura Sinica, 2018, 51(17): 3315−3324.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.17.007 [49] 胡从从, 郭清华, 贺学礼, 等. 蒙古沙冬青伴生植物AM真菌多样性 [J]. 西北农业学报, 2016, 25(6):921−932. doi: 10.7606/j.issn.1004-1389.2016.06.019HU C C, GUO Q H, HE X L, et al. Diversity of arbuscular mycorrhiza fungi near to the associated plants of Ammopiptanthus mongolicus [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(6): 921−932.(in Chinese) doi: 10.7606/j.issn.1004-1389.2016.06.019 [50] 刘佳. 长期施肥对农田土壤丛枝菌根真菌生物多样性及群落结构的影响[D]. 兰州: 兰州大学, 2009.LIU J. Effect of long-term fertilization on the diversity and community structure of arbuscular mycorrhiza fungi in northwest China[D]. Lanzhou: Lanzhou University, 2009. (in Chinese) [51] LEE K H, JOSE S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology and Management, 2003, 185(3): 263−273. doi: 10.1016/S0378-1127(03)00164-6 [52] 肖龙敏. 宁夏枸杞根际微生物群落多样性及丛枝菌根真菌对其耐盐性的影响[D]. 杨凌: 西北农林科技大学, 2018.XIAO L M. Diversity of microbial community in rhizosphere soils of Lycium barbarum L. and influence of arbuscular mycorrhizal fungi salt tolerance[D]. Yangling, China: Northwest A & F University, 2018. (in Chinese) [53] 张美庆, 王幼珊, 邢礼军. 环境因子和AM真菌分布的关系 [J]. 菌物系统, 1999, 18(1):25−29. doi: 10.13346/j.mycosystema.1999.01.005ZHANG M Q, WANG Y S, XING L J. The relationship between the distribution of am fungi and environmental factors [J]. Mycosystema, 1999, 18(1): 25−29.(in Chinese) doi: 10.13346/j.mycosystema.1999.01.005 [54] SÄLE V, AGUILERA P, LACZKO E, et al. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi [J]. Soil Biology and Biochemistry, 2015, 84: 38−52. doi: 10.1016/j.soilbio.2015.02.005 [55] 蔡晓布, 彭岳林, 冯固, 等. 西藏高原草地植物AM真菌多样性及其环境影响因子研究 [J]. 土壤学报, 2005, 42(4):642−651. doi: 10.3321/j.issn:0564-3929.2005.04.016CAI X B, PENG Y L, FENG G, et al. Am fungi diversity and their environmental factors in altiplano grassland in Tibet [J]. Acta Pedologica Sinica, 2005, 42(4): 642−651.(in Chinese) doi: 10.3321/j.issn:0564-3929.2005.04.016