GC-MS Analysis on Metabolites of Oncomelania hupensis Infested by Schistosoma japonicum
-
摘要:
目的 了解日本血吸虫寄生对钉螺代谢物的影响,为钉螺的生物防控提供参考。 方法 通过镜检确认钉螺是否有血吸虫寄生,无尾蚴寄生的为阴性钉螺,有尾蚴寄生的为阳性钉螺。应用气相色谱-质谱联用(GC-MS)检测阳性和阴性钉螺的代谢产物和含量,根据正交-偏最小二乘法筛选和分析其差异代谢物。 结果 获得18种差异显著的代谢产物,其中苯甲醇、蔗糖、邻苯二甲酸二辛酯和3-羟基丁酸等在阴性钉螺中的量比阳性钉螺高2.3~765倍,并分析上述代谢产物变化对能量代谢、蛋白质合成与分解、信号传导和基因表达等的影响。 结论 获得了日本血吸虫阳性和阴性钉螺代谢物的差异数据,并证实日本血吸虫的寄生对钉螺宿主的营养代谢、生长发育和繁殖能力等造成不利影响,为揭示日本血吸虫与钉螺互作机制和的生物灭螺提供理论基础。 Abstract:Objective Metabolites of Oncomelanias hupensis infested by parasite Schistosoma japonicum were analyzed to search for a biological control for the disease on the snails. Method Under microscopic examination, snails were determined whether or not being infested by the parasite. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the metabolites of the positive and negative snails for comparison. An orthogonal-partial least squares method was applied to differentiate the healthy and diseased subjects. Result Eighteen substances were found to present in the two categories of specimens with significant differences. Among them, benzyl alcohol, sucrose, dioctyl phthalate, and 3-hydroxybutyric acid showed 2.3 to 765 times higher in quantity on the healthy than the infested snails. Those identified metabolites were known to be associated with energy metabolism, protein synthesis and decomposition, signal transduction, and/or gene expression. Conclusion The chemical disparities on the metabolites between the healthy and diseased O. hupensis suggested that the S. japonicum parasitism seriously affected the nutritional metabolism, growth development, and reproductive capacity of the snails. The finding would aid further study on the interaction mechanism between the parasite and its host for the development of an effective biological control of the disease. -
Key words:
- Oncomelanias hupensis /
- Schistosoma japonicum /
- GC-MS /
- metabolomics
-
表 1 内标(L-2-氯苯丙氨酸)保留时间
Table 1. Retention time of internal standard (L-2-chlorophenylalanine)
W组样本
W Group sample保留时间
Retention time/minY组样本
Y Group sample保留时间
Retention time/minW-1 18.633 Y-1 18.632 W-2 18.629 Y-2 18.635 W-3 18.632 Y-3 18.632 W-4 18.630 Y-4 18.633 W-5 18.631 Y-5 18.633 W-6 18.630 Y-6 18.634 平均值 Average 18.632 标准差
Standard deviation1.771×10−3 表 2 阳性钉螺与阴性钉螺差异代谢物筛选结果
Table 2. Screened metabolites on positive and negative snails
代谢物
Metabolite相关功能
Related function相似度
Similarity各组归一化峰面积平均值
Mean normalized peak area of each groupVIP值
Variable importance in the ProjectionP值 阳性钉螺组
Positive Oncomelanias group阴性钉螺组
Negative Oncomelanias group苯甲醇 Benzyl alcohol 糖代谢 397.0 0.000 1 0.075 6 1.784 1 0.042 9 蔗糖 Sucrose 调节酶活性、能量载体 805.5 0.028 9 0.728 2 2.149 1 0.038 5 邻苯二甲酸二辛酯 Dioctyl phthalate 内分泌、生殖、心脏节律 575.2 0.000 1 0.002 5 1.694 8 0.041 0 5-氨基戊酸 5-Aminovaleric acid 抑制神经递质 555.0 0.011 5 0.171 5 2.244 6 0.004 9 3-羟基丁酸 3-Hydroxybutyric 能量代谢 769.9 0.011 0 0.079 8 1.591 2 0.012 9 叶绿醇 Phytol 对肝脏糖代谢的调节作用 332.0 0.002 1 0.014 2 1.817 1 0.008 9 胞嘧啶 Cytosin 遗传、脂类合成代谢 383.9 0.003 8 0.022 4 1.862 0 0.033 5 酵母氨酸 Saccharopine 赖氨酸代谢途径中间产物 229.2 0.033 8 0.145 3 1.718 5 0.032 6 鸟嘌呤 Guanine 遗传 737.1 0.010 7 0.044 5 1.723 5 0.009 0 2-单棕榈酸甘油酯 2-Monopalmitin 脂肪代谢 678.2 0.020 5 0.072 6 1.585 1 0.035 9 4-乙酰氨基丁酸 4-Acetamidobutyric acid 有毒化学物质 442.8 0.064 1 0.203 0 1.442 7 0.013 4 花生四烯酸 Arachidonic acid 抑制免疫 800.5 0.021 6 0.062 7 1.521 9 0.034 4 D-阿拉伯糖醇 D-arabitol 糖代谢 770.1 0.027 5 0.061 7 1.696 1 0.029 5 2,4-二氨基丁酸 2,4-Diaminobutyric acid 细胞稳定性 438.5 0.039 5 0.110 6 1.887 2 0.022 1 4-氨基丁酸 4-Aminobutyric acid 抑制神经递质 506.5 0.086 6 0.236 2 1.934 8 0.040 7 脯氨酸 Proline 细胞稳定性 865.1 0.176 6 0.470 5 1.844 1 0.043 6 缬氨酸 Valine 蛋白质合成分解 909.3 0.286 5 0.644 9 1.531 5 0.042 0 瓜氨酸 Citruline 免疫、酸碱度、血糖、胆固醇 847.9 0.049 2 0.110 8 1.853 2 0.038 9 -
[1] 陈峥, 刘波, 史怀, 等. 基于代谢组学的芽胞杆菌属间胞外代谢物异质性研究 [J]. 福建农业学报, 2012, 27(12):1347−1351. doi: 10.3969/j.issn.1008-0384.2012.12.016CHEN Z, LIU B, SHI H, et al. Metabonomic heterogeneity of extracellular metabolites of three Bacillus genera [J]. Fujian Journal of Agricultural Sciences, 2012, 27(12): 1347−1351.(in Chinese) doi: 10.3969/j.issn.1008-0384.2012.12.016 [2] 胡双, 吴志蕾, 邹丰才, 等. 代谢组学技术及其在寄生虫学中的应用 [J]. 养殖与饲料, 2016(9):10−12. doi: 10.3969/j.issn.1671-427X.2016.09.003HU S, WU Z L, ZOU F C, et al. Metabolomics and its application in parasitology [J]. Animals Breeding and Feed, 2016(9): 10−12.(in Chinese) doi: 10.3969/j.issn.1671-427X.2016.09.003 [3] 陈璐. 减毒鼠伤寒沙门氏菌影响日本血吸虫感染小鼠代谢组的NMR研究 [D]. 北京: 中国科学院大学, 2013.CHEN L. NMR studies of the effects of attenuated salmonella typhimurium on the schistosoma japonicum infected mice's metabolome [D]. Beijing: University of Chinese Academy of Sciences, 2013.(in Chinese) [4] WANG Y L, UTZINGER J, XIAO S H, et al. System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster [J]. Molecular and Biochemical Parasitology, 2006, 146(1): 1−9. doi: 10.1016/j.molbiopara.2005.10.010 [5] WU J F, XU W X, MING Z P, et al. Metabolic changes reveal the development of schistosomiasis in mice [J]. PLoS Neglected Tropical Diseases, 2010, 4(8): e807. doi: 10.1371/journal.pntd.0000807 [6] 任向楠, 梁琼麟. 基于质谱分析的代谢组学研究进展 [J]. 分析测试学报, 2017, 36(2):161−169. doi: 10.3969/j.issn.1004-4957.2017.02.002REN X N, LIANG Q L. Advance in metabolomics based on mass spectrometry [J]. Journal of Instrumental Analysis, 2017, 36(2): 161−169.(in Chinese) doi: 10.3969/j.issn.1004-4957.2017.02.002 [7] 赵丹萍, 张建军, 贺成, 等. 基于代谢组学技术的白芍养血柔肝作用机制研究 [J]. 中草药, 2017, 48(16):3412−3418. doi: 10.7501/j.issn.0253-2670.2017.16.026ZHAO D P, ZHANG J J, HE C, et al. Study on mechanism of nourishing blood and smoothing liver effects of Paeoniae Radix Alba based on metabolomics information [J]. Chinese Traditional and Herbal Drugs, 2017, 48(16): 3412−3418.(in Chinese) doi: 10.7501/j.issn.0253-2670.2017.16.026 [8] 于斐, 刘少壮, 仲明惟, 等. 基于GC-TOF-MS的结直肠癌代谢组学差异分析 [J]. 山东大学学报(医学版), 2016, 54(7):60−68.YU F, LIU S Z, ZHONG M W, et al. Metabolomics analysis of colorectal cancer based on GC-TOF-MS [J]. Journal of Shandong University(Health Sciences), 2016, 54(7): 60−68.(in Chinese) [9] 黄慧敏, 张小凤, 易根云, 等. 基于气相色谱-飞行时间质谱联用技术分析枯草芽孢杆菌对变异链球菌的抑制作用 [J]. 微生物学通报, 2018, 45(10):2174−2182.HUANG H M, ZHANG X F, YI G Y, et al. Measurement of inhibitory effect of Bacillus subtilis on Streptococcus mutans by gas-chromatography-time of flight-mass spectrometry [J]. Microbiology China, 2018, 45(10): 2174−2182.(in Chinese) [10] 黄慧敏. 基于代谢组学技术分析枯草芽孢杆菌对致龋菌的生长抑制作用 [D]. 兰州: 兰州大学, 2018.HUANG H M. Inhibitiry effect of Bacillus subtilis on cariogenic bacteria by metabolomics approaches[D]. Lanzhou: Lanzhou University, 2018.(in Chinese) [11] 田列. 痰瘀互结证代谢综合征大鼠模型代谢组学研究 [D]. 沈阳: 辽宁中医药大学, 2016.TIAN L. Study on metabolomics in rat model of metabolic syndrome with phlegm-stasis syndrome [D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2016.(in Chinese) [12] KIND T, WOHLGEMUTH G, LEE D Y, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry [J]. Analytical Chemistry, 2009, 81(24): 10038−10048. doi: 10.1021/ac9019522 [13] STOREY J D, TIBSHIRANI R. Statistical significance for genome wide studies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9440−9445. doi: 10.1073/pnas.1530509100 [14] 高阳, 李影, 夏成, 等. 奶牛酮病血浆差异代谢物及其代谢途径分析 [J]. 中国畜牧杂志, 2015, 51(3):51−56. doi: 10.3969/j.issn.0258-7033.2015.03.013GAO Y, LI Y, XIA C, et al. Plasma different metabolites and their metabolic pathway analysis for ketosis in dairy cow [J]. Chinese Journal of Animal Science, 2015, 51(3): 51−56.(in Chinese) doi: 10.3969/j.issn.0258-7033.2015.03.013 [15] 胡瑞芳, 姜慧, 李玥莹. 蔗糖代谢相关酶的研究进展 [J]. 北方园艺, 2012(1):167−170.HU R F, JIANG H, LI Y Y. Research advance on sucrose synthesize enzymes [J]. Northern Horticulture, 2012(1): 167−170.(in Chinese) [16] 明永飞, 尤进茂, 傅晓云, 等. 高效液相色谱荧光检测法测定瓜子中的4-氨基丁酸 [J]. 分析化学, 2005, 33(3):432. doi: 10.3321/j.issn:0253-3820.2005.03.034MING Y F, YOU J M, FU X Y, et al. Determination of 4-aminobutyric acid in some melon seeds with fluorescence detection by high performance liquid chromatography [J]. Chinese Journal of Analytical Chemistry, 2005, 33(3): 432.(in Chinese) doi: 10.3321/j.issn:0253-3820.2005.03.034 [17] 张宿. γ-氨基丁酸的生理作用及应用 [J]. 安徽农业科学, 2019(18):1−9. doi: 10.3969/j.issn.0517-6611.2019.18.001ZHANG X. The Physiological Mechanism and Application of γ-aminobutyric Acid [J]. Journal of Anhui Agricultural, 2019(18): 1−9.(in Chinese) doi: 10.3969/j.issn.0517-6611.2019.18.001 [18] WU Q. Environmental dependence of microbial synthesis of polyhydroxyalkanoates [J]. Acta Polymerica Sinica, 2000, 21(6): 755−756. [19] PLECKO B, STOECKLER-IPSIROGLU S, SCHOBER E, et al. Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy [J]. Pediatric Research, 2002, 52(2): 301−306. [20] 夏建飞, 梁琼麟, 钟宏福, 等. 糖肾方对糖尿病肾病患者嘌呤及嘧啶代谢的影响 [J]. 中成药, 2011, 33(1):13−17. doi: 10.3969/j.issn.1001-1528.2011.01.004XIA J F, LIANG Q L, ZHONG H F, et al. Effect of Tangshen For Mula on the purine and pyrimidine metabolism of patients with diabetic nephropathy [J]. Chinese Traditional Patent Medicine, 2011, 33(1): 13−17.(in Chinese) doi: 10.3969/j.issn.1001-1528.2011.01.004 [21] 田颖, 时明慧. 赖氨酸生理功能的研究进展 [J]. 美食研究, 2014, 31(3):60−64. doi: 10.3969/j.issn.1009-4717.2014.03.014TIAN Y, SHI M H. The research progress of the physiologic functions of lysine [J]. Journal of Researches on Dietetic Science and Culture, 2014, 31(3): 60−64.(in Chinese) doi: 10.3969/j.issn.1009-4717.2014.03.014 [22] 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展 [J]. 哈尔滨师范大学自然科学学报, 2010, 26(2):84−89. doi: 10.3969/j.issn.1000-5617.2010.02.024WANG L Y, DING G H, LI L. Progress in synthesis and metabolism of proline [J]. Natural Science Journal of Harbin Normal University, 2010, 26(2): 84−89.(in Chinese) doi: 10.3969/j.issn.1000-5617.2010.02.024 [23] 王均成, 王可, 张春宇. L-缬氨酸的应用和育种研究进展 [J]. 发酵科技通讯, 2012, 41(1):30−34. doi: 10.3969/j.issn.1674-2214.2012.01.011WANG J C, WANG K, ZHANG C Y. Advances in the application and breeding of L-valine [J]. Fermentation Technology Communication, 2012, 41(1): 30−34.(in Chinese) doi: 10.3969/j.issn.1674-2214.2012.01.011 [24] 杜晓峰, 鞠川, 胡薇. 血吸虫尾蚴侵染分子机制研究进展 [J]. 中国血吸虫病防治杂志, 2013, 25(6):664−667.DU X F, JU C, HU W. Progress in researches of molecular mechanism of schistosome cercariae infection [J]. Chinese Journal of Schistosomiasis Control, 2013, 25(6): 664−667.(in Chinese) [25] 肖小强. 3-羟基丁酸及其衍生物对神经胶质细胞生长的影响 [D]. 汕头: 汕头大学, 2007.XIAO X Q. The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells[D]. Shantou: Shantou University, 2007.(in Chinese) [26] 马巍, 匡尚富, 廖文根, 等. 我国血吸虫病防治现状与研究方向 [J]. 中国水利水电科学研究院学报, 2006, 4(4):241−245, 276. doi: 10.3969/j.issn.1672-3031.2006.04.001MA W, KUANG S F, LIAO W G, et al. The research status and directions of schistosomiasis prevention in China [J]. Journal of China Institute of Water Resources and Hydropower Research, 2006, 4(4): 241−245, 276.(in Chinese) doi: 10.3969/j.issn.1672-3031.2006.04.001 [27] CHERNIN E. Some host-finding attributes of Schistosoma mansoni miracidia [J]. The American Journal of Tropical Medicine and Hygiene, 1974, 23(3): 320−327. doi: 10.4269/ajtmh.1974.23.320 [28] 闾丘思嘉, 周云飞, 汪世平. 钉螺与血吸虫的共生机制 [J]. 中国人兽共患病学报, 2014, 30(12):1239−1244. doi: 10.3969/cjz.j.issn.1002-2694.2014.12.015LÜ QIU S J, ZHOU Y F, WANG S P. Mechanism on symbiosis of Oncomelania hupensis and Schistosoma japonicum [J]. Chinese Journal of Zoonoses, 2014, 30(12): 1239−1244.(in Chinese) doi: 10.3969/cjz.j.issn.1002-2694.2014.12.015