Physicochemical Properties of Composts with Varied Nitrogen Content in Tunnel Composting and Effect on Yield of Agaricus bisporus
-
摘要:
目的 分析不同含氮量培养料在隧道发酵过程中的理化性质变化,为优化蘑菇培养料配方提供参考依据。 方法 以麦秆、鸡粪为主要原料,采用隧道发酵技术制备含氮量为1.15%(T1)、1.35%(T2)以及1.55%(T3)共3个处理的双孢蘑菇培养料。测定不同堆制时期培养料的含水量、灰分、含氮量及pH,并统计各处理不同潮次蘑菇产量。 结果 在培养料堆制发酵过程,培养料含氮量比例呈上升趋势,处理T3二次发酵料含氮量最高,为2.28%,显著高于处理T1。培养料pH呈现先升后降的趋势,总体呈弱碱性,处理T3一次料以及二次料的pH最高,pH和原料的含氮量呈正相关性。培养料含水量都随着发酵过程不断降低,T3处理的二次料含水量最低,为65.78%,符合蘑菇生长需求。培养料灰分则随着发酵过程不断提高,T1处理初始灰分最低,发酵结束后二次培养料灰分为30.92%,较其他两个处理低。含氮量较高的培养料其总产量更高,处理T3产量最高,为20.74 kg·m−2。 结论 不同含氮量培养料发酵过程中,培养料理化性质变化较大,含氮量1.55%的培养料蘑菇产量最高,适合双孢蘑菇工厂化栽培。 Abstract:Objective Phsicochemical properties of composts with varied nitrogen (N) contents during tunnel composting were analyzed to provide the basis for optimizing the formula of Agaricus bisporus substrate. Method Wheat straws and chicken manure were blended to result in starting compost materials with varied N contents at 1.15% (T1), 1.35% (T2), and 1.55% (T3) for the tunnel composting. Samples at different composting stages were taken for measurements on moisture, ash, and N contents as well as pH. Yields of mushrooms grown on the composts from Phase Ⅰ and Phase Ⅱ of the composting process were compared for evaluation. Result In all cases, the N content in compost increased continuously during the fermentation process. Collected after Phase Ⅱ, the 2.28% of N content from T3 was significantly higher than T1. The generally weak alkaline compost had a pH increased initially followed by a decline. The pH of T3 in either Phase Ⅰ or Phase Ⅱ was the highest among all samples. A correlation between the pH and N content in compost was observed. The moisture content decreased continuously during the fermentation showing a minimum at 65.78% on T3 in Phase Ⅱ which was considered suitable for the mushroom cultivation. The ash content increased continuously along the composting. Among the various N levels, T1 had the lowest ash content at the beginning and remained the lowest with a content of 30.92% at the end of Phase Ⅱ. The compost with a higher N content during tunnel composting produced higher mushroom yield, as the greatest yield of 20.74 kg·m-2 was found on T3. Conclusion The physicochemical properties of the compost during tunnel composting changed significantly with varied N contents in the raw material. The mushroom yield reached the highest level under T3 when 1.55% N was formulated in the starting compost materials. Thus, T3 was recommended for commercial A. bisporus cultivation. -
表 1 原材料部分理化性质
Table 1. Physicohemical properties of raw materials
原料
Raw material含氮量
Nitrogen content/%含碳量
Carbon content/%含水量
Moisture content/%灰分
Ash content/%麦秆 Wheat straw 0.48 46.50 15.32 8.11 鸡粪 Chicken manure 3.80 45.00 70.27 19.92 豆粕 Soybean meal 7.2 45.4 9.6 6.8 表 2 不同含氮配方培养料发酵过程含氮量变化
Table 2. N content of composts with varied nitrogen contents at different stages of composting
(单位:%) 处理 Treatments 不同发酵阶段 Different stages of composting 进一次 Start phaseⅠ 一转 First turning 二转 Second turning 三转 Third turning 进二次 Start phaseⅡ 出料 End phaseⅡ T1 1.16±0.01 k 1.37±0.02 j 1.59±0.02 hi 1.62±0.02 ghi 1.78±0.02 de 2.05±0.03 c T2 1.38±0.02 j 1.43±0.02 j 1.67±0.01 fg 1.67±0.02 fg 1.81±0.02 d 2.20±0.06 b T3 1.57±0.02 i 1.65±0.02 gh 1.72±0.03 ef 1.74±0.01 e 1.83±0.02 d 2.28±0.00 a 注:同列数据后不同字母表示不同处理之间差异显著(P<0.05),表3~5同。
Note: Data with different letters on same column indicate significant differences between treatments(P<0.05). Same for Tables 3–5.表 3 不同含氮配方培养料发酵过程pH变化
Table 3. pH of composts with varied nitrogen contents at different stages of composting
处理 Treatments 不同发酵阶段 Different stages of composting 进一次 Start phaseⅠ 一转 First turning 二转 Second turning 三转 Third turning 进二次 Start phaseⅡ 出料 End phaseⅡ T1 8.10±0.08 bc 8.13±0.07 abc 8.13±0.03 abc 8.04±0.04 cd 7.82±0.08 ef 7.59±0.04 gh T2 8.09±0.06 bc 8.12±0.03 abc 8.23±0.03 ab 8.16±0.02 abc 7.91±0.02 de 7.54±0.03 h T3 8.23±0.04 ab 8.27±0.03 a 8.25±0.11 ab 8.14±0.02 abc 8.02±0.08 cde 7.72±0.03 fg 表 4 不同含氮配方培养料发酵过程含水量变化
Table 4. Moisture content of composts with varied nitrogen contents at different stages of composting
(单位:%) 处理 Treatments 不同发酵阶段 Different stages of composting 进一次 Start phaseⅠ 一转 First turning 二转 Second turning 三转 Third turning 进二次 Start phaseⅡ 出料 End phaseⅡ T1 79.26±0.49 a 76.23±1.20 bcd 75.28±0.92 cdef 72.12±0.88 g 72.12±0.97 g 66.75±0.52 h T2 78.70±0.70 ab 75.69±0.91 cde 73.74±0.50 defg 72.90±1.46 fg 72.64±0.44 fg 67.62±0.95 h T3 77.48±0.64 abc 76.22±0.64 bcd 74.32±1.09 defg 72.9±1.12 efg 72.11±0.84 g 65.78±0.86 h 表 5 不同含氮配方培养料发酵过程灰分变化
Table 5. Ash content of composts with varied nitrogen contents at different stages of composting
(单位:%) 处理 Treatments 不同发酵阶段 Different stages of composting 进一次 Start PhaseⅠ 一转 First turning 二转 Second turning 三转 Third turning 进二次 Start phaseⅡ 出料 End phaseⅡ T1 18.44±0.92 h 22.08±0.85 g 25.11±0.90 ef 27.29±1.04 de 28.31±0.18 cd 30.92±0.83 b T2 21.95±0.92 g 22.51±0.72 g 25.32±0.99 ef 28.59±0.18 bcd 29.90±0.60 bc 33.81±0.77 a T3 22.62±1.20 g 23.18±0.79 fg 26.58±0.35 de 28.86±1.02 bcd 30.06±0.23 bc 34.04±0.72 a -
[1] 柯斌榕, 兰清秀, 卢政辉, 等. 福建省双孢蘑菇栽培技术的变革与发展 [J]. 食药用菌, 2017, 25(1):12−19.KE B R, LAN Q X, LU Z H, et al. Innovation and development of Agaricus bisporus cultivation techniques in Fujian Province [J]. Edible and Medicinal Mushrooms, 2017, 25(1): 12−19.(in Chinese) [2] 卢政辉. 双孢蘑菇培养料堆制技术的变革和最新进展 [J]. 中国食用菌, 2009, 28(1):3−5. doi: 10.3969/j.issn.1003-8310.2009.01.001LU Z H. Changes and latest progress in the technology of composting agaric mushroom [J]. Edible Fungi of China, 2009, 28(1): 3−5.(in Chinese) doi: 10.3969/j.issn.1003-8310.2009.01.001 [3] 张昊琳, 陈青君, 张国庆, 等. 不同基质培养料理化性状及其对双孢蘑菇农艺性状与产量的影响 [J]. 中国农业科学, 2017, 50(23):4622−4631. doi: 10.3864/j.issn.0578-1752.2017.23.015ZHANG H L, CHEN Q J, ZHANG G Q, et al. The physical and chemical properties of different substrates and their effects on agronomic traits and yield of Agaricus bisporus [J]. Scientia Agricultura Sinica, 2017, 50(23): 4622−4631.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.23.015 [4] 蒋毅敏, 朱华龙, 赵昀, 等. 双孢菇不同碳氮比培养料配方的应用试验 [J]. 广西农学报, 2012, 27(1):28−30, 48. doi: 10.3969/j.issn.1003-4374.2012.01.010JIANG Y M, ZHU H L, ZHAO Y, et al. An experiment of nutrient for Mula in common cultivatea mushroom cultivation [J]. Journal of Guangxi Agriculture, 2012, 27(1): 28−30, 48.(in Chinese) doi: 10.3969/j.issn.1003-4374.2012.01.010 [5] 许修宏, 刘颜平, 王博. 堆肥隧道式后发酵技术及效果 [J]. 农业工程学报, 2009, 25(11):297−300. doi: 10.3969/j.issn.1002-6819.2009.11.055XU X H, LIU Y P, WANG B. Technology and effect of Phase Ⅱ composting in compost tunnel [J]. Transactions of the CSAE, 2009, 25(11): 297−300.(in Chinese) doi: 10.3969/j.issn.1002-6819.2009.11.055 [6] 朱燕华, 王倩, 宋晓霞, 等. 基于稻、麦秸秆工厂化栽培双孢蘑菇的理化性质变化研究 [J]. 中国农学通报, 2017, 33(7):86−91. doi: 10.11924/j.issn.1000-6850.casb16040168ZHU Y H, WANG Q, SONG X X, et al. Industrial cultivation of Agaricus bisporus based on rice straw and wheat straw: changes of physical and chemical characteristics [J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 86−91.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb16040168 [7] MARK D O. Mushroom Signal [M]. Zutphen: Roodbont Publishers, 2018: 16 − 40. [8] 王泽生, 王波, 卢政辉. 图说双孢蘑菇栽培关键技术 [M]. 北京: 中国农业出版社, 2011: 1 − 72. [9] 柯斌榕, 蔡志英, 卢政辉, 等. 杏鲍菇和金针菇菌渣堆肥的发酵特性及双孢蘑菇栽培试验 [J]. 江苏农业科学, 2018, 46(22):153−155.KE B R, CAI Z Y, LU Z H, et al. Fermentation characteristics of spent mushroom substrate of Pleurotus eryngii and Flammulina velutiper and cultivation test of Agaricus bisporus [J]. Jiangsu Agricultural Sciences, 2018, 46(22): 153−155.(in Chinese) [10] OEI P. Mushroom cultivation: appropriate technology for mushroom growers [M]. Leiden: Backhuys Publisher, 2003, 84 − 93. [11] 姚琴. 双孢蘑菇培养料配方及发酵过程中物质变化规律研究 [D]. 南京: 南京农业大学, 2014.YAO Q. Research Agaricus culture material formulations and changes of substance in the fermentation process [D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) [12] KARIAGA M G, NYONGESA H W, KEYA N C O, et al. Compost physico-chemical factors that impact on yield in button mushrooms, Agaricus bisporus(lge) and Agaricus bitorquis(quel)saccardo [J]. Journal of Agricultural Sciences, 2012, 3(1): 49−54. doi: 10.1080/09766898.2012.11884685 [13] WAKCHAURE G C, KAMLESH K M, CHOUDHARY R L, et al. An improved rapid composting procedure enhance the substrate quality and yield of Agaricus bisporus [J]. African Journal of Agricultural Research, 2013, 8(35): 4523−4536. doi: 10.5897/AJAR2013.7129 [14] 黄建春, 黄丹枫. 双孢蘑菇培养料集中发酵工艺技术研究及其应用 [J]. 上海农业学报, 2005, 21(2):53−57. doi: 10.3969/j.issn.1000-3924.2005.02.013HUANG J C, HUANG D F. Experiment and application of concentrated fermentation technology of Agaricus bisporus compost [J]. Acta Agriculturae Shanghai, 2005, 21(2): 53−57.(in Chinese) doi: 10.3969/j.issn.1000-3924.2005.02.013 [15] 邓德江, 魏金康. 荷兰工厂化栽培双孢菇技术 [J]. 北京农业, 2009(27):25−27. doi: 10.3969/j.issn.1000-6966.2009.27.007DENG D J, WEI J K. Industrialized cultivation of Agaricus bisporus in Netherlands [J]. Beijing Agriculture, 2009(27): 25−27.(in Chinese) doi: 10.3969/j.issn.1000-6966.2009.27.007