Utilization of Loss Control Urea in Yellow River Irrigation Region to Mitigate Rice Yield Reduction and Nitrogen Leaching
-
摘要:
目的 利用控失尿素开展宁夏引黄灌区水稻化肥减量研究,为提高宁夏引黄灌区水稻产量,减少氮素损失,促进氮素环保高效施用提供数据参考。 方法 通过田间试验,以不施氮肥(CK)和常规尿素为对照,设控失常量、控失减量10%、控失减量20%、控失 ∶ 常规为7 ∶ 3、控失 ∶ 常规为5 ∶ 5、控失 ∶ 常规为3 ∶ 7、控失尿素(基)等7个处理,研究不同控失尿素减量配比处理对水稻产量、氮素吸收利用和淋失的影响。 结果 (1)施用控失尿素能够促进水稻增产,控失 ∶ 常规为5 ∶ 5处理的水稻增产效果最好,比常规尿素增产8.92%,其次为控失 ∶ 常规为7 ∶ 3。控失尿素主要增加水稻的穗粒数进而增加产量。(2)施用控失尿素能够促进水稻氮肥利用率,控失减量10%处理的氮肥利用率最高,比常规尿素增加了9.79个百分点,其次为控失 ∶ 常规为5 ∶ 5处理。(3)施用控失尿素能够降低稻田田面水总氮浓度和总氮淋失量。与常规尿素相比,控失尿素各处理整个水稻生育期全氮淋失量降低了28.40%~66.32%,其中,控失减量20%处理氮素淋失降低幅度最大,其次为控失减量10%、控失常量处理。 结论 控失尿素可以显著提高水稻的产量与氮肥利用率,降低氮素淋失量。综合考虑,施用控失尿素243~270 kg N·hm−2、控失尿素与常规尿素配比5 ∶ 5是宁夏引黄灌区较合理的氮素运筹模式。 Abstract:Objective The loss control urea (LCU) that, when dissolved in water, couples in a network structure to mitigate ammonia volatilization and N leaching in rice field fertilization was studied for its practical applications. Method A plot experiment in the field was conducted with varied applications of LCU to determine the resulting rice yield and N utilization efficiency (NUE) as well as the N loss through leaching. In addition to control without N fertilization (CK), the treatments included applications of the conventional urea (CU), recommended LCU usage, 10% reduced LCU usage, 20% reduced LCU usage, LCU/CU at 7 ﹕ 3 ratio, LCU/CU at 5 ﹕ 5 ratio, LCU/CU at 3 ﹕ 7 ratio, and LCU by basal application. Result (1) All LCU applications improved the rice yield over CK. The largest increase of 8.92% over CU was resulted from the mixture of LCU/CU at 5 ﹕ 5 ratio. LCU/CU at 7 ﹕ 3 mixing ratio produced the second highest yield gain. The gains on rice yield was mainly attributed by the increase of the grain count per panicle. (2) LCU significantly improved NUE of the rice plants. By reducing 10% on the LCU usage, the highest NUE with an increase of 9.79 over CU was observed among all applications. That was followed by the second highest delivered by LCU/CU at 5 ﹕ 5 ratio. (3) LCU significantly reduced the total N concentration in surface water and N loss from leaching. In comparison to CU, depending upon the application rate, LCU reduced 28.40%–66.32% of the N loss from leaching in an entire rice growth period. By reducing 20% on the LCU usage, the highest N loss from leaching reduction was observed, followed by 10% reduced LCU usage, and then the CU treatment. Conclusion LCU significantly improved the yield and NUE of rice plants and reduced the N loss from leaching in soil. The application of LCU at 243–270 kg ·hm−2 N with a 5 ﹕ 5 mixing ratio with CU was recommended for the rice farming in the Yellow River irrigation region. -
Key words:
- loss control urea /
- rice yield /
- nitrogen leaching loss /
- Yellow River irrigation region
-
表 1 试验设计
Table 1. Experimental design
处理 Treatments 说明 Description 每666.7 m2施肥量 Every 666.7m2 amounts/kg N基肥﹕蘖肥﹕穗肥
N base﹕tillering﹕jointingN P2O5 K2O CK CK 0 0 0 — CU 常规尿素 Conventional urea 18 6 4 2﹕1﹕1 LCU 控失常量 Loss-controlled urea 18 6 4 2﹕1﹕1 LCU-10% 控失减量10% Loss-controlled urea loss 10% 16.2 6 4 2﹕1﹕1 LCU-20% 控失减量20% Loss-controlled urea loss 20% 14.4 6 4 2﹕1﹕1 L/C-7∶ 3 控失∶常规=7﹕3 Loss-controlled/conventional 7﹕3 18 6 4 2﹕1﹕1 L/C-5∶ 5 控失∶常规=5﹕5 Loss-controlled/conventional 5﹕5 18 6 4 2﹕1﹕1 L/C-3∶ 7 控失∶常规=3﹕7 Loss-controlled/conventional 3﹕7 18 6 4 2﹕1﹕1 LA 控失尿素(基) Loss-controlled urea by basal application 18 6 4 全部基施 表 2 不同控失尿素处理对水稻产量及产量构成因素的影响
Table 2. Effects of LCU treatments on quantity of and factors affecting rice yield
处理
Treatment产量
Yield/
(kg·hm−2)与CU比增产率
Increasing ratio compared with CU/%株高
Plant height/cm穗长
Panicle length/cm每666.7 m2有效穗数
Every 666.7 m2 effective panicles/万穗每穗粒数
Filled grains per panicle/个结实率
Seed setting rate/%千粒重
1 000-grain weight/gCK 5 121.55±359.91 b — 84.2±1.66 a 19.3±0.46 a 13.07±0.38 b 132.4±7.31 c 89.79±4.10 b 27.05±1.41 a CU 8 725.73±265.59 a — 96.4±2.20 a 20.1±1.65 a 20.53±0.96 a 159.2±10.28 b 81.55±4.72 a 25.13±1.03 a LCU 9 330.98±563.20 a 6.94 95.1±1.82 a 20.9±0.76 a 20.40±1.22 a 174.8±7.52 ab 82.74±3.61 a 25.64±1.09 a LCU-10% 9 175.10±648.44 a 5.15 98.2±1.92 a 19.8±0.87 a 19.40±0.64 a 168.2±7.30 ab 88.90±3.25 ab 25.43±1.07 a LCU-20% 8 475.33±468.74 a −2.87 97.8±1.25 a 18.9±0.74 a 17.60±0.59 a 159.7±8.50 b 88.45±3.02 ab 25.06±0.56 a L/C-7∶ 3 9 404.27±457.96 a 7.78 99.6±1.36 a 21.7±1.24 a 19.80±0.71 a 188.4±8.77 a 85.17±3.45 ab 26.38±0.20 a L/C-5∶ 5 9 504.22±628.06 a 8.92 98.7±1.68 a 20.9±0.78 a 20.27±0.89 a 184.6±8.20 a 86.12±1.20 ab 27.12±0.57 a L/C-3∶ 7 8 869.76±190.56 a 1.65 96.8±2.37 a 21.1±0.62 a 18.13±0.63 a 185.1±9.13 a 87.38±3.76 ab 25.20±1.69 a LA 8 593.46±520.20 a −1.52 99.1±1.68 a 20.3±0.40 a 18.40±0.74 a 161.2±9.44 b 85.71±4.53 ab 25.55±0.44 a 注:同列数据后不同小写字母表示各指标在不同处理之间差异显著(P<0.05)。表3、4同。
Note: Data with different letters within same column mean significant difference(P<0.05). Same for Tables 3 and 4.表 3 不同控失尿素处理对水稻氮肥利用率的影响
Table 3. Effects of LCU treatments on NUE of rice plants
处理
Treatment秸秆吸氮量
Straw N uptake/(kg·hm−2)籽粒吸氮量
Grain N uptake/(kg·hm−2)总吸氮量
Total N uptake/(kg·hm−2)氮肥利用率
NUE/%氮肥农学效率
AEN /(kg·kg−1)氮肥偏生产力
PFPN /(kg·kg−1)CK 36.28±5.69 b 49.61±4.95 b 85.89 b — — — CU 62.68±7.52 a 102.59±6.27 a 165.27 a 29.40 b 13.35 a 32.32 a LCU 72.48±4.77 a 109.31±5.05 a 181.79 a 35.52 ab 15.59 a 34.56 a LCU-10% 75.86±8.73 a 105.26±3.31 a 181.12 a 39.19 a 16.68 a 37.76 a LCU-20% 53.07±3.09 a 93.39±3.37 a 146.46 a 28.04 b 15.53 a 39.24 a L/C-7∶ 3 76.88±8.06 a 102.56±3.83 a 179.44 a 34.65 ab 15.86 a 34.83 a L/C-5∶ 5 70.98±3.74 a 112.33±6.22 a 183.31 a 36.08 a 16.23 a 35.20 a L/C-3∶ 7 71.42±6.58 a 96.55±5.37 a 167.97 a 30.40 ab 13.88 a 32.85 a LA 68.45±6.70 a 96.71±6.23 a 165.16 a 29.36 b 12.86 a 31.83 a 表 4 水稻各生育期总氮淋失量
Table 4. Total loss on N leaching in stages of rice growth
处理
Treatment各生育期总氮淋失量
Total N accumulative leakage in different growth stages/(kg·hm−2)占施肥量的比例
Proportion/%返青期
Greening stage分蘖期
Tillering stage孕穗期
Jointing stage开花期
Flowering stage灌浆期
Heading stage成熟期
Harvesting stage总量
SumCK 1.83±0.50 b 4.77±1.41 b 1.99±0.27 a 1.50±0.45 a 0.74±0.19 a 0.24±0.14 a 11.07 d - CU 8.83±1.38 a 18.65±0.38 a 6.94±1.46 a 2.72±0.28 a 1.72±0.43 a 1.04±0.33 a 39.89 a 10.30 a LCU 1.29±0.08 b 4.92±0.63 b 4.49±0.13 a 4.23±0.37 a 2.30±0.19 a 1.10±0.04 a 18.33 cd 2.32 b LCU-10% 1.28±0.11 b 5.39±1.06 b 4.08±0.39 a 3.14±0.67 a 1.58±0.34 a 0.76±0.26 a 16.23 cd 1.71 b LCU-20% 1.13±0.11 b 5.13±1.01 b 3.60±0.73 a 1.77±0.28 a 1.23±0.18 a 0.57±0.05 a 13.44 d 0.63 b L/C-7∶3 1.98±0.18 b 7.05±1.22 b 7.11±1.50 a 3.47±0.24 a 2.04±0.27 a 1.03±0.06 a 22.67 bc 3.93 b L/C-5∶5 2.89±0.19 b 8.92±0.39 b 6.89±0.75 a 3.00±0.17 a 1.54±0.24 a 0.91±0.10 a 24.14 bc 4.47 b L/C-3∶ 7 3.04±0.85 b 8.61±0.83 b 7.24±1.15 a 2.91±0.25 a 1.46±0.31 a 0.60±0.14 a 23.87 bc 4.37 b LA 10.67±0.57 a 7.77±0.28 b 4.45±0.12 a 3.09±0.58 a 1.56±0.15 a 1.02±0.07 a 28.56 b 6.11 b -
[1] 陈伟伟, 李强坤, 胡亚伟, 等. 青铜峡灌区水稻田三氮变化特征试验研究 [J]. 农业环境科学学报, 2010, 29(4):790−794.CHEN W W, LI Q K, HU Y W, et al. Experimental research on variation feature of three kinds of nitrogen from paddy field in Qingtongxia irrigation area [J]. Journal of Agro-Environment Science, 2010, 29(4): 790−794.(in Chinese) [2] 张爱平, 刘汝亮, 杨世琦, 等. 基于缓释肥的侧条施肥技术对水稻产量和氮素流失的影响 [J]. 农业环境科学学报, 2012, 31(3):555−562.ZHANG A P, LIU R L, YANG S Q, et al. Effect of side bar fertilization technology based on slow-release fertilizer on rice yield and nitrogen losses [J]. Journal of Agro-Environment Science, 2012, 31(3): 555−562.(in Chinese) [3] 刘汝亮, 张爱平, 李友宏, 等. 长期配施有机肥对宁夏引黄灌区水稻产量和稻田氮素淋失及平衡特征的影响 [J]. 农业环境科学学报, 2015, 34(5):947−954. doi: 10.11654/jaes.2015.05.018LIU R L, ZHANG A P, LI Y H, et al. Rice yield, nitrogen use efficiency(NUE) and nitrogen leaching losses as affected by long-term combined applications of manure and chemical fertilizers in Yellow River irrigated region of ningxia, China [J]. Journal of Agro-Environment Science, 2015, 34(5): 947−954.(in Chinese) doi: 10.11654/jaes.2015.05.018 [4] 张惠, 杨正礼, 罗良国, 等. 黄河上游灌区稻田N2O排放特征 [J]. 生态学报, 2011, 31(21):6606−6615.ZHANG H, YANG Z L, LUO L G, et al. The feature of N2O emission from a paddy field in irrigation area of the Yellow River [J]. Acta Ecologica Sinica, 2011, 31(21): 6606−6615.(in Chinese) [5] 周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响 [J]. 植物营养与肥料学报, 2016, 22(6):1449−1457. doi: 10.11674/zwyf.16039ZHOU L P, YANG L P, BAI Y L, et al. Comparison of several slow-released nitrogen fertilizers in Ammonia volatilization and nitrogen utilization in summer maize field [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1449−1457.(in Chinese) doi: 10.11674/zwyf.16039 [6] 王国文, 郭景丽, 姜瑛, 等. 施用控失尿素对土壤养分含量及水稻产量的影响 [J]. 河南农业科学, 2015, 44(10):73−75.WANG G W, GUO J L, JIANG Y, et al. Effects of loss-control urea application on soil nutrient content and rice yield [J]. Journal of Henan Agricultural Sciences, 2015, 44(10): 73−75.(in Chinese) [7] 薛欣欣, 吴小平, 张永发, 等. 控失尿素对稻田氨挥发、氮素转运及利用效率的影响 [J]. 应用生态学报, 2018, 29(1):133−140.XUE X X, WU X P, ZHANG Y F, et al. Effects of loss-controlled urea on Ammonia volatilization, N translocation and utilization efficiency in paddy rice [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 133−140.(in Chinese) [8] 姚单君, 张爱华, 杨爽, 等. 新型氮肥对水稻产量养分积累及吸收利用的影响 [J]. 西南农业学报, 2018, 31(10):2121−2126.YAO D J, ZHANG A H, YANG S, et al. Effects of new-type fertilizer application on yield, nutrient accumulation and fertilizer utilization of rice [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(10): 2121−2126.(in Chinese) [9] 吴萍萍, 李录久, 耿言安, 等. 不同新型肥料对江淮地区水稻生长及氮素吸收利用的影响 [J]. 中国土壤与肥料, 2019(3):149−153.WU P P, LI L J, GENG Y A, et al. Effects of new-type fertilizers on rice growth, nitrogen uptake and utilization in Jianghuai region [J]. Soil and Fertilizer Sciences in China, 2019(3): 149−153.(in Chinese) [10] 郭晓彦, 潘兹亮, 张丽霞, 等. 施用新型尿素对豫南地区水稻产量及氮肥利用率的影响 [J]. 湖北农业科学, 2019, 58(15):19−21, 131.GUO X Y, PAN Z L, ZHANG L X, et al. Effects of new urea application on rice yield and nitrogen use efficiency in southern Henan [J]. Hubei Agricultural Sciences, 2019, 58(15): 19−21, 131.(in Chinese) [11] 薛欣欣, 吴小平, 王文斌, 等. 控失尿素与普通尿素配施对水稻产量及氮肥利用效率的影响 [J]. 热带作物学报, 2018, 39(11):2132−2139. doi: 10.3969/j.issn.1000-2561.2018.11.004XUE X X, WU X P, WANG W B, et al. Effects of combined application of common urea and controlled-loss urea on grain yield and nitrogen use efficiency in paddy rice [J]. Chinese Journal of Tropical Crops, 2018, 39(11): 2132−2139.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.11.004 [12] 马洪波, 孙若晨, 吴建燕, 等. 控失尿素和含锌锰尿素对小麦产量和肥料利用率的影响 [J]. 中国农学通报, 2018, 34(13):8−13. doi: 10.11924/j.issn.1000-6850.casb17030199MA H B, SUN R C, WU J Y, et al. Effect of controlled release urea and Zn/Mn urea on wheat yield and fertilizer utilization rate [J]. Chinese Agricultural Science Bulletin, 2018, 34(13): 8−13.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb17030199 [13] LIU R H, KANG Y H, PEI L, et al. Use of a new controlled-loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou reservoir area of China [J]. Communications in Soil Science and Plant Analysis, 2016, 47(9): 1137−1147. doi: 10.1080/00103624.2016.1166245 [14] 张伟纳, 刘宇娟, 董成, 等. 氮肥运筹对潮土冬小麦/夏玉米产量及氮肥利用率的影响 [J]. 土壤学报, 2019, 56(1):165−175.ZHANG W N, LIU Y J, DONG C, et al. Effect of nitrogen application on yield and nitrogen use efficiency of winter wheat and summer maize in fluvo-aquic soil [J]. Acta Pedologica Sinica, 2019, 56(1): 165−175.(in Chinese) [15] 岳克, 马雪, 宋晓, 等. 新型氮肥及施氮量对玉米产量和氮素吸收利用的影响 [J]. 中国土壤与肥料, 2018(4):75−81. doi: 10.11838/sfsc.20180412YUE K, MA X, SONG X, et al. Effects of new-type and application rate of N-fertilizer on yield, nitrogen uptake and nitrogen use efficiency of summer maize [J]. Soil and Fertilizer Sciences in China, 2018(4): 75−81.(in Chinese) doi: 10.11838/sfsc.20180412 [16] 吴兴洪, 张爱华, 张钦, 等. 不同控失剂用量的控失尿素对玉米产量及氮肥利用的影响 [J]. 河南农业科学, 2019, 48(1):24−30.WU X H, ZHANG A H, ZHANG Q, et al. Effects of controlled-release urea with different dosages of controlled-release agent on utilization of nitrogen fertilizer and yield of maize [J]. Journal of Henan Agricultural Sciences, 2019, 48(1): 24−30.(in Chinese) [17] 周丽平, 杨俐苹, 白由路, 等. 夏玉米施用不同缓释化处理氮肥的效果及氮肥去向 [J]. 中国农业科学, 2018, 51(8):1527−1536. doi: 10.3864/j.issn.0578-1752.2018.08.010ZHOU L P, YANG L P, BAI Y L, et al. Effects of different slow-released nitrogen fertilizers on summer maize and nitrogen fate in the field [J]. Scientia Agricultura Sinica, 2018, 51(8): 1527−1536.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.08.010 [18] 张爱华, 张钦, 杨爽, 等. 新型尿素对玉米产量及养分积累、利用的影响 [J]. 玉米科学, 2018, 26(5):137−142.ZHANG A H, ZHANG Q, YANG S, et al. Effect of new-type urea on yield, nutrient accumulation and utilization of corn [J]. Journal of Maize Sciences, 2018, 26(5): 137−142.(in Chinese) [19] 李源, 张炎, 哈丽哈什·依巴提, 等. 新型尿素对膜下滴灌棉花产量及氮肥利用率的影响 [J]. 江苏农业学报, 2019, 35(1):85−90. doi: 10.3969/j.issn.1000-4440.2019.01.012LI Y, ZHANG Y, HALIHASHI·YIBAT, et al. Effects of new-type urea on yield and nitrogen use efficiency of drip irrigated cotton under plastic film mulching [J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 85−90.(in Chinese) doi: 10.3969/j.issn.1000-4440.2019.01.012 [20] 马腾飞, 李青军, 张炎, 等. 控失尿素施用量及不同配比对新疆加工番茄产量、品质、氮肥利用率的影响 [J]. 新疆农业科学, 2017, 54(12):2239−2247. doi: 10.6048/j.issn.1001-4330.2017.12.011MA T F, LI Q J, ZHANG Y, et al. Effects of loss-control urea application amount and different ratio on yield, quality and nitrogen use efficiency of processing tomato [J]. Xinjiang Agricultural Sciences, 2017, 54(12): 2239−2247.(in Chinese) doi: 10.6048/j.issn.1001-4330.2017.12.011 [21] 哈丽哈什·依巴提, 张炎, 李青军. 新型尿素对加工番茄的产量和氮素利用率的影响 [J]. 新疆农业科学, 2019, 56(2):278−286.HALIHASHI·YIBAT, ZHANG Y, LI Q J, et al. The effect of new-type urea on yield and nitrogen utilization of processing tomato [J]. Xinjiang Agricultural Sciences, 2019, 56(2): 278−286.(in Chinese) [22] 刘汝亮, 李友宏, 张爱平, 等. 育秧箱全量施肥对水稻产量和氮素流失的影响 [J]. 应用生态学报, 2012, 23(7):1853−1860.LIU R L, LI Y H, ZHANG A P, et al. Effects of seeding-box total fertilization on rice yield and nitrogen loss [J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1853−1860.(in Chinese) [23] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2007. [24] 洪瑜, 王芳, 刘汝亮, 等. 长期配施有机肥对灌淤土春玉米产量及氮素利用的影响 [J]. 水土保持学报, 2017, 31(2):248−252, 261.HONG Y, WANG F, LIU R L, et al. Effects of long-term fertilization on yield and nitrogen utilization of spring maize in irrigation silting soils [J]. Journal of Soil and Water Conservation, 2017, 31(2): 248−252, 261.(in Chinese) [25] 姚单君, 张爱华, 杨爽, 等. 控失尿素对水稻养分吸收利用及产量的影响 [J]. 西南农业学报, 2019, 32(11):2600−2606.YAO D J, ZHANG A H, YANG S, et al. Effects of loss-control urea on rice yield, nutrients uptake and utilization [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2600−2606.(in Chinese) [26] 张艳菲, 王晨阳, 李世莹, 等. 控失尿素养分释放特性研究 [J]. 磷肥与复肥, 2017, 32(3):11−12. doi: 10.3969/j.issn.1007-6220.2017.03.005ZHANG Y F, WANG C Y, LI S Y, et al. Study on nutrient release mechanism of loss-control urea [J]. Phosphate & Compound Fertilizer, 2017, 32(3): 11−12.(in Chinese) doi: 10.3969/j.issn.1007-6220.2017.03.005 [27] 文祥朋, 孙克刚, 张琨, 等. 控失尿素不同施用方式对水稻产量、品质及氮肥利用率的影响 [J]. 河南科学, 2017, 35(4):601−605.WEN X P, SUN K G, ZHANG K, et al. Effects of different application methods of lost control urea on yield, quality and nitrogen use efficiency in rice [J]. Henan Science, 2017, 35(4): 601−605.(in Chinese) [28] 李志国, 张润花, 陈防, 等. 控失尿素对水旱轮作下水稻产量和氮素利用效率的影响 [J]. 中国土壤与肥料, 2018(1):23−27. doi: 10.11838/sfsc.20180104LI Z G, ZHANG R H, CHEN F, et al. Effect of controlled release urea combined application with common urea on yield and nitrogen utilization efficiency of rice in paddy-upland rotation [J]. Soil and Fertilizer Sciences in China, 2018(1): 23−27.(in Chinese) doi: 10.11838/sfsc.20180104