Dissipation and Risk Evaluation of Nitenpyram and Tolfenpxrad Residues in Tea and Soil
-
摘要:
目的 明确烯啶虫胺和唑虫酰胺两种新型杀虫剂在茶叶和土壤中的残留消解动态。 方法 应用气相色谱法建立了烯啶虫胺和唑虫酰胺推荐施用剂量和2倍推荐施用剂量在茶叶和茶园土壤中的残留量分析方法及其残留消解。 结果 2种供试药剂在茶叶和土壤中的残留量随时间的推移呈负指数函数递减,残留消解动态符合一级动力学方程,其中烯啶虫胺试验剂量在茶叶和土壤中的残留半衰期分别为6.08~6.54 d和1.52~1.68 d,在茶叶中残留量消解至MRL以下所需0.91~3.33 d;唑虫酰胺试验剂量在茶叶和土壤中的残留半衰期分别为4.47~4.74 d和1.87~1.89 d,在茶叶中残留量消解至MRL以下需5.10~8.18 d。 结论 烯啶虫胺和唑虫酰胺在茶叶和土壤中均属于易消解农药,研究结果可为烯啶虫胺和唑虫酰胺在茶园中的合理使用及其在我国规定最大允许残留限量(MRL)标准的制定提供参考。 Abstract:Objective Dissipation of two new insecticides and risk of the residues in tea and soil were studied. Method A gas chromatographic method was applied for analyzing nitenpyram and tolfenpxrad residues in tea and soil specimens to determine the dissipation and transfer of the insecticides after application. Result The insecticide residues in tea and soil decreased exponentially with time after application in a first-order kinetic function. The half-lives of nitenpyram at the recommended dosage were 6.08–6.54 d in tea and 1.52–1.68 d in soil. It took 0.91–3.33 d for the residue to degrade below the maximum allowable residue limit (MRL) in tea. For tolfenpxrad at the recommended usage level, the residue half-lives were 4.47–4.74 d in tea and 1.87–1.89 d in soil. It took 5.10–8.18 d for the pesticide residue to dissipate below MRL in tea. Conclusion Both nitenpyram and tolfenpxrad were found to degrade to below the MRLs in tea for safe consumption as well as in soil for environmental protection. -
Key words:
- nitenpyram /
- tolfenpxrad /
- tea /
- residue degradation /
- risk assessment
-
表 1 2种供试药剂在茶叶和土壤中的添加回收率
Table 1. Recovery rates of two insecticides applied on tea and soil
供试药剂
Testing agents基质
Substrate添加量
Dosage/(mg·kg−1)平均回收率
Average recovery/%相对标准偏差
Relative standard deviation/%烯啶虫胺
Nitenpyram茶叶 Tea 0.05 78.84 15.20 0.50 83.45 9.53 5.00 85.25 6.74 土壤 Soil 0.05 82.12 13.23 0.50 85.98 10.54 5.00 104.82 4.76 唑虫酰胺
Tolfenpxrad茶叶 Tea 0.05 85.92 12.64 0.50 88.33 14.14 5.00 92.23 8.73 土壤 Soil 0.05 86.14 11.57 0.50 90.32 9.55 5.00 97.45 7.33 表 2 2种供试药剂在茶叶中和土壤中的残留消解动态
Table 2. Dissipation of insecticides with time in tea and soil
供试药剂
Testing agents施药浓度
Pesticide concentration/(mg·kg−1)基质
Substrate消解动态方程
Dissipation dynamics equation半衰期
Half-life period/d决定系数 (r2)
Coefficient of determination烯啶虫胺 Nitenpyram 66.7 茶叶 Tea CT = 9.07e−0.11T 6.54 0.983 7 133.3 茶叶 Tea CT = 14.63e−0.11T 6.08 0.973 3 66.7 土壤 Soil CT = 0.25e−0.41T 1.68 0.960 0 133.3 土壤 Soil CT = 0.35e−0.46T 1.52 0.946 4 唑虫酰胺 Tolfenpxrad 200 茶叶 Tea CT = 34.81e−0.16T 4.74 0.981 6 400 茶叶 Tea CT = 69.87e−0.19T 4.47 0.994 1 200 土壤 Soil CT = 2.63e−0.37T 1.89 0.937 0 400 土壤 Soil CT = 4.06e−0.37T 1.87 0.936 1 注:CT表示施药后时间T时的农药残留量,单位为mg·kg−1;T表示施药后时间,单位为d。
Note: CT: pesticide residues at T, mg·kg−1; T: time after pesticide application, d.表 3 烯啶虫胺和唑虫酰胺在茶叶中的MRL值及消解所需时间
Table 3. MRLs and dissipation time of nitenpyram and tolfenpxrad in tea
供试药剂
Testing Agents残留限量MRL/(mg·kg−1) 施药剂量
Pesticide Concentration/
(mg·kg−1)茶叶中残留量消解至MRL(日本标准)以下所需时间
Time required for the residue of tea to be dissipated below Japanese MRL/d烯啶虫胺
Nitenpyram10 66.7 0.91 133.3 3.33 唑虫酰胺
Tolfenpxrad15 200 5.10 400 8.18 -
[1] ZHANG J, LIU J, QIN X W, et al. Analysis of time-and concentration-mortality relationship of nitenpyram against different larval stages of Nilaparvata lugens (Hemiptera: Delphacidae) [J]. Journal of Economic Entomology, 2010, 103(5): 1665−1669. doi: 10.1603/EC10138 [2] TSUMURA Y, NAKAMURA Y, TONOGAI Y, et al. Determination of neonicotinoid pesticide nitenpyram and its metabolites in agricultural products [J]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 1998, 39(2): 127−134_1. doi: 10.3358/shokueishi.39.127 [3] BAJPAI N K, JEENGAR K L. Efficacy of tolfenpyrad 15% EC against whitefly, Bemisia tabaci Gennadius. infesting okr [J]. Progressive Horticulture, 2014: 76−79. [4] HIKIJI W, YAMAGUCHI K, SAKA K J, et al. Acute fatal poisoning with Tolfenpyrad [J]. Journal of Forensic and Legal Medicine, 2013, 20(8): 962−964. doi: 10.1016/j.jflm.2013.08.012 [5] The Japan Food Chemical Research Foundation.Maximum residue limits (MRLs) list of agricultural chemicals in foods[DB/OL]. [2019-08-15]. http://www.m5.ws001.squarestart.ne.jp/foundation/agrdtl.php?a_inq=64900. [6] 姚华源. 不同药剂防治茶树茶小绿叶蝉药效试验 [J]. 安徽农学通报(上半月刊), 2011, 17(7):135−136.YAO H Y. Efficacy of different insecticides against tea leafhopper in tea [J]. Anhui Agricultural Science Bulletin, 2011, 17(7): 135−136.(in Chinese) [7] 王国鑫. 30%唑虫酰胺SC对茶小绿叶蝉的田间药效试验 [J]. 福建热作科技, 2019, 44(3):15−17. doi: 10.3969/j.issn.1006-2327.2019.03.006WANG G X. Field efficacy test of 30% tolfenpyrad suspension concentrate on Empoasca pirisuga [J]. Fujian Science & Technology of Tropical Crops, 2019, 44(3): 15−17.(in Chinese) doi: 10.3969/j.issn.1006-2327.2019.03.006 [8] 曾明森, 刘丰静, 黄伙水, 等. 茶园唑虫酰胺残留动态与使用安全性 [J]. 福建农业学报, 2014, 29(8):774−778. doi: 10.3969/j.issn.1008-0384.2014.08.013ZENG M S, LIU F J, HUANG H S, et al. Residue and safety of tolfenpyrad used in tea plantations [J]. Fujian Journal of Agricultural Sciences, 2014, 29(8): 774−778.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.08.013 [9] 毕富春, 韩冰, 王文涛, 等. 唑虫酰胺15%乳油气相色谱定量分析 [J]. 农药科学与管理, 2012, 33(5):41−43. doi: 10.3969/j.issn.1002-5480.2012.05.015BI F C, HAN B, WANG W T, et al. Quantitative analysis of tolfenpxrad 15% EC by gas chromatography [J]. Pesticide Science and Administration, 2012, 33(5): 41−43.(in Chinese) doi: 10.3969/j.issn.1002-5480.2012.05.015 [10] NY/T 788-2018. 中华人民共和国农业行业标准的中国: 农药残留标准测试 [S]. 北京: 中华人民共和国农业部标准出版社, 2018. [11] GB/T 31270.1-2014. 中华人民共和国国家标准: 测试化学农药的环境安全性评价标准 [S]. 北京: 中国标准出版社, 2014. [12] DOBSON P, TINEMBART O, FISCH R D, et al. Efficacy of nitenpyram as a systemic flea adulticide in dogs and cats [J]. Veterinary Record, 2000, 147(25): 709. [13] ABROL D P, SHANKAR U. Pesticides, food safety and integrated pest management [M]. Integrated Pest Management. Dordrecht: Springer Netherlands, 2014: 167-199. [14] 胡贝贞, 宋伟华, 董文洪, 等. 茶叶中联苯菊酯等4种农药残留测定结果的不确定度评定 [J]. 现代测量与实验室管理, 2012, 20(1):29−32.HU B Z, SONG W H, DONG W H, et al. Evaluation of uncertainty of determination results of four pesticide residues in tea [J]. Advanced Measurement and Laboratory Management, 2012, 20(1): 29−32.(in Chinese) [15] 成婧, 王美玲, 朱绍华, 等. 固相萃取-高效液相色谱-串联质谱法测定茶叶中啶虫脒、吡虫啉和氟虫腈残留量 [J]. 食品安全质量检测学报, 2016, 7(1):131−137.CHENG J, WANG M L, ZHU S H, et al. Determination of imidacloprid, acetamiprid and fipronil residues in tea by high performance liquid chromatography-tandem mass spectrometry coupled with solid-phase extraction [J]. Journal of Food Safety & Quality, 2016, 7(1): 131−137.(in Chinese) [16] 王立一, 杨春亮, 王晓芳. 茶叶中阿维菌素和吡虫啉残留量的测定 [J]. 分析仪器, 2013(4):23−26.WANG L Y, YANG C L, WANG X F. Determination of abamectin and imidacloprid residues in tea [J]. Analytical Instrumentation, 2013(4): 23−26.(in Chinese) [17] 魏鹏, 曹梦超, 王全胜, 等. QuEChERS-PSA-气相色谱法分析联苯菊酯·啶虫脒微乳剂在茶园中的残留特征 [J]. 农业环境科学学报, 2015, 34(10):2032−2038.WEI P, CAO M C, WANG Q S, et al. Analysis of residual profiles of bifenthrin and acetamiprid in tea garden by QuEChERS-PSA-GC [J]. Journal of Agro-Environment Science, 2015, 34(10): 2032−2038.(in Chinese) [18] Joint FAO/WHO Food Standards Programme. Codex Alimentarius Commission: Procedural manual 21 [M]. FAO/WHO, 2009. [19] YUE N, KUANG H, SUN L, et al. An empirical analysis of the impact of EU's new food safety standards on China's tea export [J]. International Journal of Food Science & Technology, 2010, 45(4): 745−750. [20] CHEN Z M, WAN H B. Factors affecting residues of pesticides in tea [J]. Pesticide Science, 1988, 23(2): 109−118. doi: 10.1002/ps.2780230204 [21] PRAMANIK S K, SAHA P, BHATTACHARYYA A, et al. Studies on the fate of ready-mix formulation of endosulfan and cypermethrin in tea [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(5): 1016−1020. doi: 10.1007/s00128-012-0808-3 [22] TEWARY D K, KUMAR V, RAVINDRANATH S D, et al. Dissipation behavior of bifenthrin residues in tea and its brew [J]. Food Control, 2005, 16(3): 231−237. doi: 10.1016/j.foodcont.2004.02.004 [23] PARAMASIVAM M, CHANDRASEKARAN S. Persistence behaviour of deltamethrin on tea and its transfer from processed tea to infusion [J]. Chemosphere, 2014, 111: 291−295. doi: 10.1016/j.chemosphere.2014.03.111