• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物联网的害虫智能监测系统设计与实现

邱荣洲 赵健 池美香 梁勇 陈世雄 翁启勇

邱荣洲,赵健,池美香,等. 基于物联网的害虫智能监测系统设计与实现 [J]. 福建农业学报,2020,35(2):235−242 doi: 10.19303/j.issn.1008-0384.2020.02.015
引用本文: 邱荣洲,赵健,池美香,等. 基于物联网的害虫智能监测系统设计与实现 [J]. 福建农业学报,2020,35(2):235−242 doi: 10.19303/j.issn.1008-0384.2020.02.015
QIU R Z, ZHAO J, CHI M X, et al. Design and Field Tests of Intelligent Pest Monitoring System based on Internet of Things [J]. Fujian Journal of Agricultural Sciences,2020,35(2):235−242 doi: 10.19303/j.issn.1008-0384.2020.02.015
Citation: QIU R Z, ZHAO J, CHI M X, et al. Design and Field Tests of Intelligent Pest Monitoring System based on Internet of Things [J]. Fujian Journal of Agricultural Sciences,2020,35(2):235−242 doi: 10.19303/j.issn.1008-0384.2020.02.015

基于物联网的害虫智能监测系统设计与实现

doi: 10.19303/j.issn.1008-0384.2020.02.015
基金项目: 中央引导地方科技发展专项(2017L3007);福建省农业科学院科研项目(A2017-28);福建省财政专项—福建省农业科学院科技创新团队建设项目(STIT2018-1-8)
详细信息
    作者简介:

    邱荣洲(1979−),男,副研究员,主要从事数字植保技术研究(E-mail:qiurz@faas.cn

    通讯作者:

    翁启勇(1962−),男,硕士,研究员,研究方向:有害生物综合防治与农业信息学(E-mail:wengqy@faas.cn

  • 中图分类号: S 431.9

Design and Field Tests of Intelligent Pest Monitoring System based on Internet of Things

  • 摘要:   目的  针对传统害虫监测手段存在时耗长、人工成本高、数据质量不高等问题,将性诱捕技术与物联网技术相结合,开发基于物联网的害虫智能监测系统,实现对目标害虫的自动计数。  方法  应用诱芯与高压电网相结合进行害虫诱捕,采用红外传感器进行害虫计数,通过4G网络进行数据传输。基于.net平台开发害虫监测Web管理网站、害虫监测APP、数字植保微信公众号等配套软件系统,用户可以通过电脑、手机APP、微信等多终端远程浏览查询数据。  结果  以蔬菜重要害虫斜纹夜蛾为例,通过在厦门同安、三明尤溪的蔬菜基地的田间试验结果显示,厦门同安试验点的诱捕效果为276.14%,自动计数准确率为93.52%;三明尤溪试验点诱捕效果为162.60%,自动计数准确率为81.59%,表明该自动监测系统的害虫诱捕率和识别准确率均较高。  结论  开发的害虫智能监测系统实现了害虫测报的自动化和智能化,提高了害虫监测的效率,在害虫预测预报中具有广阔的应用前景。
  • 图  1  系统功能结构

    Figure  1.  Design of system functions

    图  2  害虫智能监测装置示意图与实物图

    注:1:太阳能供电组件;2:数据传输单元(DTU);3:高压电网;4:性信息素;5:害虫诱杀器;6:智能计数器;7:温湿度传感器;8:水泥墩。

    Figure  2.  Schematics and photos of intelligent pests monitoring system

    Note: 1. solar power supply module; 2. data transmission unit(DTU); 3. high voltage power grid; 4. sex pheromone; 5. trap and kill device for pest; 6. intelligent counter; 7. temperature and humidity sensor; 8. cement square pier.

    图  3  系统层次结构

    Figure  3.  Levels in monitoring system

    图  4  软件测试界面

    注:a, 时数据列表;b, 时折线图;c, 实时数据与设备管理界面(手机APP);d, 近1月虫量和24小时虫量界面(数字植保微信公众号)。

    Figure  4.  Interface for software testing

    Note: a, List of hours; b, line chart of hour; c, real-time data and interface of device administration(mobile phone APP);d, interface of the pest number in 1 month and interface of the pest number in 24 hours(digital plant protection of WeChat official).

    图  5  害虫智能监测系统自动计数与人工计数、夜蛾诱捕对照的对比结果

    注:a, 厦门同安试验点;b, 三明尤溪试验点。

    Figure  5.  Comparison on daily pest counts obtained by intelligent pests monitoring system, manual observation, and pheromone trapping

    Note: a, Vegetable base of Tong'an, Xiamen; b, vegetable base of Youxi, Sanming.

    表  1  同安、尤溪试验点的计数正确率、诱捕效果比较

    Table  1.   Pest counting accuracy and trapping effects on tests at Tong'an and Youxi sites

    试验点
    Experimental sites
    日期
    Date(M/D)
    天数
    Days/d
    自动计数总虫量
    Machine counting
    人工计数总虫量
    Labor counting
    对照总虫量
    Pheromone traps counting
    平均计数正确率
    Average of counting accuracy/%
    平均诱捕效果
    Average of trap effect/%
    厦门同安(诱虫量大)
    Tong'an (large number of trapping)
    05-18—05-31141 5511 49765693.52276.14
    三明尤溪(诱虫量小)
    Youxi (small number of trapping)
    05-25—06-071464565081.59162.60
    下载: 导出CSV
  • [1] 黄冲, 刘万才. 我国农作物病虫测报信息化发展进程、现状与推进思路 [J]. 中国植保导刊, 2018, 38(2):21−25, 31. doi: 10.3969/j.issn.1672-6820.2018.02.004

    HUANG C, LIU W C. The history, present and future of informatization of crop pest forecast in China [J]. China Plant Protection, 2018, 38(2): 21−25, 31.(in Chinese) doi: 10.3969/j.issn.1672-6820.2018.02.004
    [2] 姚青, 吕军, 杨保军, 等. 基于图像的昆虫自动识别与计数研究进展 [J]. 中国农业科学, 2011, 44(14):2886−2899. doi: 10.3864/j.issn.0578-1752.2011.14.005

    YAO Q, LÜ J, YANG B J, et al. Progress in research on digital image processing technology for automatic insect identification and counting [J]. Scientia Agricultura Sinica, 2011, 44(14): 2886−2899.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.14.005
    [3] 肖德琴, 傅俊谦, 邓晓晖, 等. 基于物联网的桔小实蝇诱捕监测装备设计及试验 [J]. 农业工程学报, 2015, 31(7):166−172.

    XIAO D Q, FU J Q, DENG X H, et al. Design and test of remote monitoring equipment for Bactrocera dorsalis trapping based on Internet of things [J]. Transactions of the CSAE, 2015, 31(7): 166−172.(in Chinese)
    [4] 陈梅香, 郭继英, 许建平, 等. 梨小食心虫自动监测识别计数系统研制 [J]. 环境昆虫学报, 2018, 40(5):1164−1174.

    CHEN M X, GUO J Y, XU J P, et al. Research of automatic monitoring device and counting system for Grapholita molesta(Busck) [J]. Journal of Environmental Entomology, 2018, 40(5): 1164−1174.(in Chinese)
    [5] 韩瑞珍, 何勇. 基于计算机视觉的大田害虫远程自动识别系统 [J]. 农业工程学报, 2013, 29(3):156−162.

    HAN R Z, HE Y. Remote automatic identification system of field pests based on computer vision [J]. Transactions of the CSAE, 2013, 29(3): 156−162.(in Chinese)
    [6] ELIOPOULOS P A, POTAMITIS I, KONTODIMAS D C. Estimation of population density of stored grain pests via bioacoustic detection [J]. Crop Protection, 2016, 85: 71−78. doi: 10.1016/j.cropro.2016.04.001
    [7] 朱世明, 李逸云, 高丽娜, 等. 利用基于光学暗场反射测量的光学遥感技术探测飞行的农业害虫 [J]. 昆虫学报, 2016, 59(12):1376−1385.

    ZHU S M, LI Y Y, GAO L N, et a1. Optical remote detection of flying agricultural pest insects using dark-field reflectance measurements [J]. Acta Entomologica Sinica, 2016, 59(12): 1376−1385.(in Chinese)
    [8] 张智, 张云慧, 姜玉英, 等. 我国昆虫雷达发展现状与应用展望 [J]. 中国植保导刊, 2017, 37(4):27−32. doi: 10.3969/j.issn.1672-6820.2017.04.004

    ZHANG Z, ZHANG Y H, JIANG Y Y, et al. Development of entomological radar in China and prospects for future application [J]. China Plant Protection, 2017, 37(4): 27−32.(in Chinese) doi: 10.3969/j.issn.1672-6820.2017.04.004
    [9] JIANG J A, LIN T S, YANG E C, et al. Application of a web-based remote agro-ecological monitoring system for observing spatial distribution and dynamics of Bactrocera dorsalis in fruit orchards [J]. Precision Agriculture, 2013, 14(3): 323−342. doi: 10.1007/s11119-012-9298-x
    [10] 文韬, 洪添胜, 李立君, 等. 橘小实蝇成虫诱捕监测装置的设计与试验 [J]. 农业工程学报, 2014, 30(11):37−44. doi: 10.3969/j.issn.1002-6819.2014.11.005

    WEN T, HONG T S, LI L J, et al. Design and experiment of trapping and monitoring device for adult Bactrocera Dorsalis(Hendel) [J]. Transactions of the CSAE, 2014, 30(11): 37−44.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.11.005
    [11] 文韬, 洪添胜, 李立君, 等. 基于无线传感器网络的橘小实蝇成虫监测系统设计与试验 [J]. 农业工程学报, 2013, 29(24):147−154. doi: 10.3969/j.issn.1002-6819.2013.24.020

    WEN T, HONG T S, LI L J, et al. Experiment and development of monitoring system for Bactrocera Dorsalis(Hendel) based on wireless sensors network [J]. Transactions of the CSAE, 2013, 29(24): 147−154.(in Chinese) doi: 10.3969/j.issn.1002-6819.2013.24.020
    [12] 李震, 洪添胜, 文韬, 等. 基于物联网的果园实蝇监测系统的设计与实现 [J]. 湖南农业大学学报(自然科学版), 2015, 41(1):89−93.

    LI Z, HONG T S, WEN T, et al. Design and development of orchard fruit fly monitoring system based on the Internet-of-things [J]. Journal of Hunan Agricultural University(Natural Sciences Edition), 2015, 41(1): 89−93.(in Chinese)
    [13] 封洪强, 姚青. 农业害虫自动识别与监测技术 [J]. 植物保护, 2018, 44(5):127−133, 198.

    FENG H Q, YAO Q. Automatic identification and monitoring technologies of agricultural pest insects [J]. Plant Protection, 2018, 44(5): 127−133, 198.(in Chinese)
    [14] 刘万才. 我国农作物病虫害现代测报工具研究进展 [J]. 中国植保导刊, 2017, 37(9):29−33. doi: 10.3969/j.issn.1672-6820.2017.09.005

    LIU W C. Research progress on modern tools for crop pests forecasting in China [J]. China Plant Protection, 2017, 37(9): 29−33.(in Chinese) doi: 10.3969/j.issn.1672-6820.2017.09.005
    [15] 2017王志彬, 王开义, 张水发, 等. 基于K-means聚类和椭圆拟合方法的白粉虱计数算法 [J]. 农业工程学报, 2014, 30(1):105−112. doi: 10.3969/j.issn.1002-6819.2014.01.014

    WANG Z B, WANG K Y, ZHANG S F, et al. Whiteflies counting with K-means clustering and ellipse fitting [J]. Transactions of the CSAE, 2014, 30(1): 105−112.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.01.014
    [16] 刘雨青, 李佳佳, 曹守启, 等. 基于物联网的螃蟹养殖基地监控系统设计及应用 [J]. 农业工程学报, 2018, 34(16):205−213. doi: 10.11975/j.issn.1002-6819.2018.16.027

    LIU Y Q, LI J J, CAO S Q, et al. Design and application of monitoring system for crab breeding base based on Internet of Things [J]. Transactions of the CSAE, 2018, 34(16): 205−213.(in Chinese) doi: 10.11975/j.issn.1002-6819.2018.16.027
    [17] 邓晓璐, 王培, 马宁, 等. 基于物联网的寒地玉米大斑病预警系统的设计与实现 [J]. 中国农机化学报, 2016, 37(7):166−170.

    DENG X L, WANG P, MA N, et al. Design and implementation on early-warning system of the northern corn leaf blight in cold area based on Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 166−170.(in Chinese)
    [18] 田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法 [J]. 农业工程学报, 2016, 32(20):195−201. doi: 10.11975/j.issn.1002-6819.2016.20.025

    TIAN R, CHEN M X, DONG D M, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision [J]. Transactions of the CSAE, 2016, 32(20): 195−201.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.20.025
    [19] 陈梅香, 杨信廷, 石宝才, 等. 害虫自动识别与计数技术研究进展与展望 [J]. 环境昆虫学报, 2015, 37(1):176−183.

    CHEN M X, YANG X T, SHI B C, et al. Research progress and prospect of technologies for automatic identifying and counting of pests [J]. Journal of Environmental Entomology, 2015, 37(1): 176−183.(in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1833
  • HTML全文浏览量:  1340
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-12-26
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回