Design and Field Tests of Intelligent Pest Monitoring System based on Internet of Things
-
摘要:
目的 针对传统害虫监测手段存在时耗长、人工成本高、数据质量不高等问题,将性诱捕技术与物联网技术相结合,开发基于物联网的害虫智能监测系统,实现对目标害虫的自动计数。 方法 应用诱芯与高压电网相结合进行害虫诱捕,采用红外传感器进行害虫计数,通过4G网络进行数据传输。基于.net平台开发害虫监测Web管理网站、害虫监测APP、数字植保微信公众号等配套软件系统,用户可以通过电脑、手机APP、微信等多终端远程浏览查询数据。 结果 以蔬菜重要害虫斜纹夜蛾为例,通过在厦门同安、三明尤溪的蔬菜基地的田间试验结果显示,厦门同安试验点的诱捕效果为276.14%,自动计数准确率为93.52%;三明尤溪试验点诱捕效果为162.60%,自动计数准确率为81.59%,表明该自动监测系统的害虫诱捕率和识别准确率均较高。 结论 开发的害虫智能监测系统实现了害虫测报的自动化和智能化,提高了害虫监测的效率,在害虫预测预报中具有广阔的应用前景。 Abstract:Objective To overcome the shortcomings of time-consuming, labor-intensive and inaccurate conventional data collection of pest monitoring at vegetable fields, a system utilizing the internet of things technology was developed and tested. Method By coupling the use of sex pheromone to trap pests with the application of internet of things, a means to automatically count target pests in the field was designed. A pheromonal lure combined with a high voltage power grid was installed in vegetable fields to trap and kill pests for accurate insect counting. Infrared sensors were used to detect the presence of pests, and the collected data transmitted through a 4G network. Utilizing the .net platform, pest monitoring management website and APP, WeChat official digital plant protection account, and other supporting software were developed for easy access by users to browse and query data remotely with computer, mobile phone, WeChat connection or other terminals. One of the major pests infesting vegetables, Spodoptera litura (Fabricius), was targeted in the experiments held at the vegetable fields in Tong'an, Xiamen and Youxi, Sanming. Result The insect trapping effects were 276.14% in Tong'an and 162.60% in Youxi. The counting accuracy of the system were 93.52% in Tong'an and 81.59% in Youxi. Both the trapping rate and counting accuracy delivered by the system in the tests were considered acceptable. Conclusion The newly designed intelligent pests monitoring system automatically and accurately monitored the pests in the vegetable fields. It could be used to generate information for infestation forecasting. -
Key words:
- Internet of things /
- pest monitoring /
- digital plant protection /
- automatic counting
-
图 2 害虫智能监测装置示意图与实物图
注:1:太阳能供电组件;2:数据传输单元(DTU);3:高压电网;4:性信息素;5:害虫诱杀器;6:智能计数器;7:温湿度传感器;8:水泥墩。
Figure 2. Schematics and photos of intelligent pests monitoring system
Note: 1. solar power supply module; 2. data transmission unit(DTU); 3. high voltage power grid; 4. sex pheromone; 5. trap and kill device for pest; 6. intelligent counter; 7. temperature and humidity sensor; 8. cement square pier.
图 4 软件测试界面
注:a, 时数据列表;b, 时折线图;c, 实时数据与设备管理界面(手机APP);d, 近1月虫量和24小时虫量界面(数字植保微信公众号)。
Figure 4. Interface for software testing
Note: a, List of hours; b, line chart of hour; c, real-time data and interface of device administration(mobile phone APP);d, interface of the pest number in 1 month and interface of the pest number in 24 hours(digital plant protection of WeChat official).
表 1 同安、尤溪试验点的计数正确率、诱捕效果比较
Table 1. Pest counting accuracy and trapping effects on tests at Tong'an and Youxi sites
试验点
Experimental sites日期
Date(M/D)天数
Days/d自动计数总虫量
Machine counting人工计数总虫量
Labor counting对照总虫量
Pheromone traps counting平均计数正确率
Average of counting accuracy/%平均诱捕效果
Average of trap effect/%厦门同安(诱虫量大)
Tong'an (large number of trapping)05-18—05-31 14 1 551 1 497 656 93.52 276.14 三明尤溪(诱虫量小)
Youxi (small number of trapping)05-25—06-07 14 64 56 50 81.59 162.60 -
[1] 黄冲, 刘万才. 我国农作物病虫测报信息化发展进程、现状与推进思路 [J]. 中国植保导刊, 2018, 38(2):21−25, 31. doi: 10.3969/j.issn.1672-6820.2018.02.004HUANG C, LIU W C. The history, present and future of informatization of crop pest forecast in China [J]. China Plant Protection, 2018, 38(2): 21−25, 31.(in Chinese) doi: 10.3969/j.issn.1672-6820.2018.02.004 [2] 姚青, 吕军, 杨保军, 等. 基于图像的昆虫自动识别与计数研究进展 [J]. 中国农业科学, 2011, 44(14):2886−2899. doi: 10.3864/j.issn.0578-1752.2011.14.005YAO Q, LÜ J, YANG B J, et al. Progress in research on digital image processing technology for automatic insect identification and counting [J]. Scientia Agricultura Sinica, 2011, 44(14): 2886−2899.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.14.005 [3] 肖德琴, 傅俊谦, 邓晓晖, 等. 基于物联网的桔小实蝇诱捕监测装备设计及试验 [J]. 农业工程学报, 2015, 31(7):166−172.XIAO D Q, FU J Q, DENG X H, et al. Design and test of remote monitoring equipment for Bactrocera dorsalis trapping based on Internet of things [J]. Transactions of the CSAE, 2015, 31(7): 166−172.(in Chinese) [4] 陈梅香, 郭继英, 许建平, 等. 梨小食心虫自动监测识别计数系统研制 [J]. 环境昆虫学报, 2018, 40(5):1164−1174.CHEN M X, GUO J Y, XU J P, et al. Research of automatic monitoring device and counting system for Grapholita molesta(Busck) [J]. Journal of Environmental Entomology, 2018, 40(5): 1164−1174.(in Chinese) [5] 韩瑞珍, 何勇. 基于计算机视觉的大田害虫远程自动识别系统 [J]. 农业工程学报, 2013, 29(3):156−162.HAN R Z, HE Y. Remote automatic identification system of field pests based on computer vision [J]. Transactions of the CSAE, 2013, 29(3): 156−162.(in Chinese) [6] ELIOPOULOS P A, POTAMITIS I, KONTODIMAS D C. Estimation of population density of stored grain pests via bioacoustic detection [J]. Crop Protection, 2016, 85: 71−78. doi: 10.1016/j.cropro.2016.04.001 [7] 朱世明, 李逸云, 高丽娜, 等. 利用基于光学暗场反射测量的光学遥感技术探测飞行的农业害虫 [J]. 昆虫学报, 2016, 59(12):1376−1385.ZHU S M, LI Y Y, GAO L N, et a1. Optical remote detection of flying agricultural pest insects using dark-field reflectance measurements [J]. Acta Entomologica Sinica, 2016, 59(12): 1376−1385.(in Chinese) [8] 张智, 张云慧, 姜玉英, 等. 我国昆虫雷达发展现状与应用展望 [J]. 中国植保导刊, 2017, 37(4):27−32. doi: 10.3969/j.issn.1672-6820.2017.04.004ZHANG Z, ZHANG Y H, JIANG Y Y, et al. Development of entomological radar in China and prospects for future application [J]. China Plant Protection, 2017, 37(4): 27−32.(in Chinese) doi: 10.3969/j.issn.1672-6820.2017.04.004 [9] JIANG J A, LIN T S, YANG E C, et al. Application of a web-based remote agro-ecological monitoring system for observing spatial distribution and dynamics of Bactrocera dorsalis in fruit orchards [J]. Precision Agriculture, 2013, 14(3): 323−342. doi: 10.1007/s11119-012-9298-x [10] 文韬, 洪添胜, 李立君, 等. 橘小实蝇成虫诱捕监测装置的设计与试验 [J]. 农业工程学报, 2014, 30(11):37−44. doi: 10.3969/j.issn.1002-6819.2014.11.005WEN T, HONG T S, LI L J, et al. Design and experiment of trapping and monitoring device for adult Bactrocera Dorsalis(Hendel) [J]. Transactions of the CSAE, 2014, 30(11): 37−44.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.11.005 [11] 文韬, 洪添胜, 李立君, 等. 基于无线传感器网络的橘小实蝇成虫监测系统设计与试验 [J]. 农业工程学报, 2013, 29(24):147−154. doi: 10.3969/j.issn.1002-6819.2013.24.020WEN T, HONG T S, LI L J, et al. Experiment and development of monitoring system for Bactrocera Dorsalis(Hendel) based on wireless sensors network [J]. Transactions of the CSAE, 2013, 29(24): 147−154.(in Chinese) doi: 10.3969/j.issn.1002-6819.2013.24.020 [12] 李震, 洪添胜, 文韬, 等. 基于物联网的果园实蝇监测系统的设计与实现 [J]. 湖南农业大学学报(自然科学版), 2015, 41(1):89−93.LI Z, HONG T S, WEN T, et al. Design and development of orchard fruit fly monitoring system based on the Internet-of-things [J]. Journal of Hunan Agricultural University(Natural Sciences Edition), 2015, 41(1): 89−93.(in Chinese) [13] 封洪强, 姚青. 农业害虫自动识别与监测技术 [J]. 植物保护, 2018, 44(5):127−133, 198.FENG H Q, YAO Q. Automatic identification and monitoring technologies of agricultural pest insects [J]. Plant Protection, 2018, 44(5): 127−133, 198.(in Chinese) [14] 刘万才. 我国农作物病虫害现代测报工具研究进展 [J]. 中国植保导刊, 2017, 37(9):29−33. doi: 10.3969/j.issn.1672-6820.2017.09.005LIU W C. Research progress on modern tools for crop pests forecasting in China [J]. China Plant Protection, 2017, 37(9): 29−33.(in Chinese) doi: 10.3969/j.issn.1672-6820.2017.09.005 [15] 2017王志彬, 王开义, 张水发, 等. 基于K-means聚类和椭圆拟合方法的白粉虱计数算法 [J]. 农业工程学报, 2014, 30(1):105−112. doi: 10.3969/j.issn.1002-6819.2014.01.014WANG Z B, WANG K Y, ZHANG S F, et al. Whiteflies counting with K-means clustering and ellipse fitting [J]. Transactions of the CSAE, 2014, 30(1): 105−112.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.01.014 [16] 刘雨青, 李佳佳, 曹守启, 等. 基于物联网的螃蟹养殖基地监控系统设计及应用 [J]. 农业工程学报, 2018, 34(16):205−213. doi: 10.11975/j.issn.1002-6819.2018.16.027LIU Y Q, LI J J, CAO S Q, et al. Design and application of monitoring system for crab breeding base based on Internet of Things [J]. Transactions of the CSAE, 2018, 34(16): 205−213.(in Chinese) doi: 10.11975/j.issn.1002-6819.2018.16.027 [17] 邓晓璐, 王培, 马宁, 等. 基于物联网的寒地玉米大斑病预警系统的设计与实现 [J]. 中国农机化学报, 2016, 37(7):166−170.DENG X L, WANG P, MA N, et al. Design and implementation on early-warning system of the northern corn leaf blight in cold area based on Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 166−170.(in Chinese) [18] 田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法 [J]. 农业工程学报, 2016, 32(20):195−201. doi: 10.11975/j.issn.1002-6819.2016.20.025TIAN R, CHEN M X, DONG D M, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision [J]. Transactions of the CSAE, 2016, 32(20): 195−201.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.20.025 [19] 陈梅香, 杨信廷, 石宝才, 等. 害虫自动识别与计数技术研究进展与展望 [J]. 环境昆虫学报, 2015, 37(1):176−183.CHEN M X, YANG X T, SHI B C, et al. Research progress and prospect of technologies for automatic identifying and counting of pests [J]. Journal of Environmental Entomology, 2015, 37(1): 176−183.(in Chinese)