Characteristics and Simulations of Soil Infiltration in Agroforestry on Karst Mountains
-
摘要:
目的 明确喀斯特山地混农林模式的土壤入渗特征及混农林业对土壤入渗的影响。 方法 通过田间试验,以单作经济林模式为对照,对林药、林粮、林草模式的入渗特征及其影响因子进行分析,并用4种常用的入渗模型对其过程进行拟合。 结果 ① 3种混农林模式的初始入渗率、稳定入渗率、平均入渗率及入渗总量总体优于对照,并随土层的增加而降低;依据入渗过程曲线,将入渗过程按入渗历时(t)分为3个阶段:迅速降低阶段(t≤10 min)、缓慢降低阶段( 10 min<t≤40 min)和趋于稳定阶段(t>40 mim)。② 从各模式综合得分来看,林药模式(0.405)得分最高,入渗能力最好,其次是林草模式(0.357),林粮模式(0.209) 尽管优于对照(0.175),但与对照差异较小,表明林药模式与林草模式的保水固土效应比林粮模式更佳。③ 土壤入渗性能与理化性质的相关性分析显示:土壤容重、总孔隙度、非毛管孔隙度分别与入渗性能呈极显著负相关(P<0.01)、极显著正相关(P<0.01)、显著正相关(P<0.05),是影响土壤入渗性能的主导因子。④ 从R2的均值来看,Philip模型(0.783)、Kostiakov模型(0.942)对各模式的拟合效果较差,而Horton模型(0.977)与通用经验模型(0.976)拟合效果较好。 结论 各混农林模式通过影响土壤孔隙度及容重改善土壤入渗,但改善效果有差异,其中林药模式对土壤入渗的影响最大,入渗能力最强,林草模式次之,其入渗过程可用Horton模型及通用经验模型进行描述。 Abstract:Objective Characteristics of soil infiltration in agroforestry on karst mountains were studied, and their infiltration patterns fitted to simulation models. Method Through experiments in the field, the soil infiltration characteristics and factors affecting agroforestry of forest+medicinal herb, forest+grain crop, and forest+grass types were analyzed by comparing with a monocultural economic forest setting. The infiltration patterns were entered in 4 commonly applied mathematical models for best fitting. Result ① The initial, stable and average infiltration rates as well as the total infiltration amounts of the 3 agroforestry types were higher than those of the monocultural forestry. They decreased in the soil layers of increasing depth. The infiltration curves showed 3 distinctive stages with varied durations (t), i.e., rapid reduction phase (t≤10 min), slow reduction phase ( 10 min<t≤40 min), and stabilization phase (t>40 min). ② The forest+medicinal herb type agroforestry had the highest comprehensive performance score of 0.405 with the greatest infiltration capacity among all. It was followed by forest+grass with a score of 0.357, and forest+grain of 0.209. Since forest+grain scored higher than control (0.175) but not significantly, only the other two cultivation types were considered more effective on water-retention and soil-fixation. ③ A significant inverse correlation on the infiltration performance was observed with the soil bulk density (P<0.01), an extremely significant correlation with the total porosity (P<0.01), and a significant correlation with the non-capillary porosity (P<0.05). ④ The mean R2 was 0.783 with the Philip model, 0.942 with the Kostiakov model, whereas 0.977 with the Horton model, and 0.976 with the general empirical model, indicating the later two models fitting the infiltration characteristics of all agroforesrty types better. Conclusion All 3 tested agroforestry types improved the soil infiltration to varying extents by affecting the soil porosity and bulk density on karst mountains. The agroforestry of forest+medicinal herb type appeared to provide the greatest impact on soil infiltration, followed by forest+grass, and the infiltration pattern could best be described by the Horton or the general empirical model. -
Key words:
- agroforestry /
- infiltration /
- simulation /
- soil moisture /
- karst
-
图 1 山地混农林地土壤入渗特征
注:不同小写字母表示同一土层不同模式之间差异显著(P<0.05),不同大写字母表示同一模式不同土层间差异显著(P<0.05)。CK对照,F1林药模式,F2林粮模式,F3林草模式。
Figure 1. Characteristics of soil infiltration in agroforestry on karst mountains
Note: Different lowercase letters indicate significant differences between different patterns in the same soil layer(P<0.05), different capital letters indicate significant differences between different soil layers in the same pattern(P<0.05). CK, control; F1 forest+medicinal herb pattern; F2 forest+grain pattern; F3 forest+grass pattern.
表 1 混农林模式及样地基本概况
Table 1. Agroforestry types and basic information on test plot
类型
Type间作
方式
Interplant
mode株行距
Planting spacing/m平均高
Mean height /
m平均
胸径
Mean DBH/
cm植被
覆盖率
Vegetation coverage/%土壤pH值
Soil pH土壤
紧实度
Soil compaction样地
大小
Plot size/m坡位
Slope position坡度
Slope degree坡向
Slope aspect海拔
Altitude/m种植
年限
Cropping years土层
厚度
Soil thickness/
cm对照
Control梨单作
Single pear crop1.9×1.2 2 8 40 7.4 较紧
Tighter5×12 中坡
Slope14° 300° 1 114 2 45 林药模式
Forest+medicinal herb pattern梨+太子参
Pear+prince ginseng1.9×1.2 2 10 68 7.6 疏松
Looser5×12 中坡
Slope14° 300° 1 120 2 55 林粮模式
Forest+grain pattern梨+大豆
Pear+soybean1.9×1.2 2 9 46 7.3 较紧
Tighter5×12 中坡
Slope14° 300° 1 114 2 50 林草模式
Forest+grass pattern梨+黑麦草
Pear+ryegrass1.9×1.2 2 9 70 7.7 疏松
Looser5×12 中坡
Slope14° 300° 1 114 2 47 表 2 土壤入渗性能主成分分析
Table 2. Principal components of soil infiltration
参数
Parameter初始入渗率
Initial infiltration rate稳定入渗率
Stable infiltration rate平均入渗率
Average infiltration rate入渗总量
Total infiltration特征值
Eigenvalue infiltration rate贡献率
Contribution infiltration rate/%累计贡献率
Cumulative proportion/%P1 0.991 0.994 0.999 0.998 3.97 99.245 99.245 表 3 不同混农林模式土壤入渗能力评价
Table 3. Evaluation of soil infiltration capacity in agroforestry of varied types
类型
Type0~15 cm 15~30 cm 30~45 cm 综合得分
Comprehensive score排名
Comprehensive ranking得分
Score排名
Ranking得分
Score排名
Ranking得分
Score排名
Ranking对照 Control 0.442 2 4 0.071 4 4 0.010 0 4 0.174 6 4 林药模式 Forest+medicinal herb pattern 1.013 0 1 0.181 9 1 0.019 0 3 0.404 6 1 林粮模式 Forest+grain pattern 0.488 5 3 0.102 1 2 0.035 9 2 0.208 8 3 林草模式 Forest+grass pattern 0.936 1 2 0.093 2 3 0.039 7 1 0.356 3 2 表 4 土壤入渗性能及其影响因子的相关性分析
Table 4. Correlation between soil infiltration and various factors
入渗特征
Infiltration characteristics土层深度
Soil horizon总孔隙度
Total porosity毛管孔隙度
Capillary porosity非毛管孔隙度
Non-capillary porosity土壤容重
Soil bulk density砂粒
Sand粉粒
Silt黏粒
Clay有机质
Organic matter初始入渗率
Initial infiltration rate−0.761** 0.772** −0.215 0.622* −0.766** 0.114 −0.412 −0.041 0.304 稳定入渗率
Stable infiltration rate−0.772** 0.781** −0.202 0.618* −0.775** 0.118 −0.417 −0.052 0.307 平均入渗率
Average infiltration rate−0.764** 0.774** −0.208 0.617* −0.768** 0.120 −0.421 −0.057 0.308 入渗总量
Total infiltration−0.773** 0.780** −0.206 0.618* −0.775** 0.129 −0.424 −0.063 0.311 注:*表示P<0.05,**表示P<0.01。
Note: * P<0.05, ** P<0.01.表 5 各模型参数拟合结果
Table 5. Fitting infiltration data to models
样地
Plots土层
Soil layer/cm理论模型
Theoretical models经验模型
Empirical modelPhilip模型
Philip modelKostiakov模型
Kostiakov modelHorton模型
Horton model通用经验模型
General experience modelS A R2 β α R2 ƒ0−ƒc K R2 ɑ b n R2 对照 Control 0–15 6.501 2.190 0.783 5.903 0.244 0.951 2.823 0.082 0.978 288.038 −282.633 −0.003 0.978 15–30 0.862 0.330 0.723 0.863 0.248 0.941 0.415 0.090 0.983 109.154 −108.370 −0.001 0.955 30–45 0.079 0.030 0.790 0.070 0.247 0.93 0.033 0.078 0.986 28.410 −28.346 −0.0003 0.984 林药模式
Forest+medicinal herb pattern0–15 22.111 6.250 0.823 18.118 0.249 0.947 9.010 0.072 0.968 476.076 −459.490 −0.006 0.983 15–30 2.851 1.140 0.728 2.616 0.195 0.904 1.043 0.054 0.947 3.901 −1.521 −0.151 0.952 30–45 0.167 0.060 0.789 0.150 0.244 0.952 0.072 0.080 0.980 37.111 −36.980 −0.001 0.980 林粮模式
Forest+grain pattern0–15 6.838 2.160 0.774 6.073 0.253 0.94 2.950 0.078 0.978 284.789 −279.254 −0.003 0.972 15–30 1.153 0.390 0.782 1.048 0.243 0.951 0.495 0.082 0.983 83.866 −82.904 −0.002 0.981 30–45 0.415 0.120 0.781 0.360 0.263 0.945 0.187 0.076 0.986 48.161 −47.834 −0.001 0.979 林草模式
Forest+grass pattern0–15 20.014 5.880 0.781 17.349 0.263 0.944 8.773 0.076 0.986 577.386 −561.631 −0.004 0.979 15–30 1.329 0.360 0.823 1.075 0.253 0.953 0.543 0.074 0.970 72.633 −71.651 −0.002 0.989 30–45 0.448 0.130 0.816 0.376 0.248 0.95 0.187 0.074 0.975 42.975 −42.630 −0.001 0.985 注:R2模型的决定系数。
Note:R2, determination coefficient of the model. -
[1] CHENG D B, DONG L Y, QIAN F, et al. Observation and modeling on irregular purple soil water infiltration process [J]. Journal of Mountain Science, 2017, 14(6): 1076−1085. doi: 10.1007/s11629-015-3737-x [2] 李星辰, 杨吉华, 胡建朋, 等. 石灰岩瘠薄山地不同密度侧柏林保土效益 [J]. 水土保持学报, 2012, 26(1):53−57.LI X C, YANG J H, HU J P, et al. Soil conservation benefits of different densities of orientalis in Shandong limestone barren mountain [J]. Journal of Soil and Water Conservation, 2012, 26(1): 53−57.(in Chinese) [3] 雷孝章, 曹叔尤, 代永波. 松柏林分对土壤入渗的调蓄作用研究 [J]. 北京林业大学学报, 2005, 27(6):20−23. doi: 10.3321/j.issn:1000-1522.2005.06.004LEI X Z, CAO S Y, DAI Y B. Adjusting and storing function of pine-cypress stand to soil infiltration [J]. Journal of Beijing Forestry University, 2005, 27(6): 20−23.(in Chinese) doi: 10.3321/j.issn:1000-1522.2005.06.004 [4] 熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题 [J]. 地理学报, 2012, 67(7):878−888. doi: 10.11821/xb201207002XIONG K N, LI J, LONG M Z. Features of soil and water loss and key issues in demonstration areas for combating Karst rocky desertification [J]. Acta Geographica Sinica, 2012, 67(7): 878−888.(in Chinese) doi: 10.11821/xb201207002 [5] 阳利永, 吴献花, 赵斌, 等. 滇池柴河流域不同土地利用方式土壤养分剖面分异 [J]. 水土保持研究, 2012, 19(5):95−99.YANG L Y, WU X H, ZHAO B, et al. Effects of different land uses on profile variability of soil nutrients in Chaihe basin of Dianchi lake [J]. Research of Soil and Water Conservation, 2012, 19(5): 95−99.(in Chinese) [6] 熊康宁, 陈起伟. 基于生态综合治理的石漠化演变规律与趋势讨论 [J]. 中国岩溶, 2010, 29(3):267−273. doi: 10.3969/j.issn.1001-4810.2010.03.008XIONG K N, CHEN Q W. Discussion on Karst rocky desert evolution trend based on ecologically comprehensive treatment [J]. Carsologica Sinica, 2010, 29(3): 267−273.(in Chinese) doi: 10.3969/j.issn.1001-4810.2010.03.008 [7] 陈海, 朱大运, 陈浒, 等. 混农林业对石漠化地区土壤环境的影响及其应用 [J]. 世界林业研究, 2019, 32(2):13−18.CHEN H, ZHU D Y, CHEN H, et al. Effect of agroforestry on soil environment in rocky desertification area and its application prospect [J]. World Forestry Research, 2019, 32(2): 13−18.(in Chinese) [8] 吴清林, 梁虹, 熊康宁, 等. 石漠化环境水土综合整治与山地混农林业前沿理论与对策 [J]. 水土保持学报, 2018, 32(2):11−18, 33.WU Q L, LIANG H, XIONG K N, et al. Frontier theories and countermeasures for integrated regulation of soil and water loss and mountainous agroforestry in rocky desertification environment [J]. Journal of Soil and Water Conservation, 2018, 32(2): 11−18, 33.(in Chinese) [9] WU Q L, LIANG H, XIONG K N, et al. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: frontier theories and outlook [J]. Agroforestry Systems, 2019, 93(5): 1927−1938. doi: 10.1007/s10457-018-0301-z [10] 秦华军, 何丙辉, 赵旋池, 等. 西南喀斯特山地林下经济模式对土壤渗透性的影响 [J]. 中国生态农业学报, 2013, 21(11):1386−1394. doi: 10.3724/SP.J.1011.2013.01386QIN H J, HE B H, ZHAO X C, et al. Influence of Karst mountain under-forest economy modes on soil infiltration in Southwest China [J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1386−1394.(in Chinese) doi: 10.3724/SP.J.1011.2013.01386 [11] 李天阳, 何丙辉, 田家乐, 等. 重庆璧山5种典型农林混作模式土壤理化性质及水分入渗特性 [J]. 水土保持学报, 2013, 27(4):103−108, 200.LI T Y, HE B H, TIAN J L, et al. Soil physical and chemical properties and soil infiltration characteristics of five agroforestry intercropping types in Bishan, Chongqing [J]. Journal of Soil and Water Conservation, 2013, 27(4): 103−108, 200.(in Chinese) [12] 陈建刚, 李启军, 侯旭峰, 等. 妫水河流域不同植被覆盖条件下土壤入渗及模型的比较分析 [J]. 中国水土保持科学, 2004, 2(3):22−26. doi: 10.3969/j.issn.1672-3007.2004.03.006CHEN J G, LI Q J, HOU X F, et al. Soil infiltration and models in different vegetation coverages in Guishuihe river basin [J]. Science of Soil and Water Conservation, 2004, 2(3): 22−26.(in Chinese) doi: 10.3969/j.issn.1672-3007.2004.03.006 [13] 赵洋毅, 王玉杰, 王云琦, 等. 渝北水源区水源涵养林构建模式对土壤渗透性的影响 [J]. 生态学报, 2010, 30(15):4162−4172.ZHAO Y Y, WANG Y J, WANG Y Q, et al. Effects of structures of plantation forests on soil infiltration characteristics in source water protect areas in northern Chongqing City [J]. Acta Ecologica Sinica, 2010, 30(15): 4162−4172.(in Chinese) [14] 张昌顺, 范少辉, 官凤英, 等. 闽北毛竹林的土壤渗透性及其影响因子 [J]. 林业科学, 2009, 45(1):36−42. doi: 10.3321/j.issn:1001-7488.2009.01.008ZHANG C S, FAN S H, GUAN F Y, et al. Soil infiltration characteristics and its influencing factors under Phyllostachys edulis forests in northern Fujian Province [J]. Scientia Silvae Sinicae, 2009, 45(1): 36−42.(in Chinese) doi: 10.3321/j.issn:1001-7488.2009.01.008 [15] BRUSSAARD L, PULLEMAN M M, OUÉDRAOGO É, et al. Soil fauna and soil function in the fabric of the food web [J]. Pedobiologia, 2007, 50(6): 447−462. doi: 10.1016/j.pedobi.2006.10.007 [16] 吴军虎, 邵凡凡, 刘侠. 蚯蚓粪对土壤团聚体组成和入渗过程水分运移的影响 [J]. 水土保持学报, 2019, 33(3):81−87.WU J H, SHAO F F, LIU X. Effects of earthworm casts on soil aggregate composition and water transport during infiltration [J]. Journal of Soil and Water Conservation, 2019, 33(3): 81−87.(in Chinese) [17] 苟丽琼, 景祝蓉, 邓冬梅, 等. 猕猴桃复合种植对土壤动物群落特征的影响 [J]. 西北农业学报, 2018, 27(10):1485−1491. doi: 10.7606/j.issn.1004-1389.2018.10.012GOU L Q, JING Z R, DENG D M, et al. Effects of different cropping modes on soil fauna community characteristics in kiwi(Actinidia chinensis planch.)orchard [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(10): 1485−1491.(in Chinese) doi: 10.7606/j.issn.1004-1389.2018.10.012 [18] 李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响 [J]. 福建农业学报, 2019, 34(6):690−696.LI Y C, LIN Z N, LU Z, et al. Microbial diversity and community structure in soil under tea bushes-Ganoderma lucidum intercropping [J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 690−696.(in Chinese) [19] 任启文, 毕君, 李联地, 等. 冀北山地3种森林植被恢复类型对土壤质量的影响 [J]. 生态环境学报, 2018, 27(10):1818−1824.REN Q W, BI J, LI L D, et al. Effects of three forest vegetation restoration types on soil quality in northern Hebei mountain area [J]. Ecology and Environmental Sciences, 2018, 27(10): 1818−1824.(in Chinese) [20] 李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响 [J]. 生态学报, 2013, 33(5):1535−1544. doi: 10.5846/stxb201205170737LI J X, HE B H, CHEN Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration [J]. Acta Ecologica Sinica, 2013, 33(5): 1535−1544.(in Chinese) doi: 10.5846/stxb201205170737 [21] 王震洪, 段昌群, 侯永平, 等. 植物多样性与生态系统土壤保持功能关系及其生态学意义 [J]. 植物生态学报, 2006, 30(3):392−403. doi: 10.3321/j.issn:1005-264X.2006.03.004WANG Z H, DUAN C Q, HOU Y P, et al. The relationship of plant species diversity to ecosystem function in relation to soil conservation in semi-humid evergreen forests, Yunnan Province, China [J]. Journal of Plant Ecology, 2006, 30(3): 392−403.(in Chinese) doi: 10.3321/j.issn:1005-264X.2006.03.004 [22] SAHIN H, ANDERSON S H, UDAWATTA R P. Water infiltration and soil water content in claypan soils influenced by agroforestry and grass buffers compared to row crop management [J]. Agroforestry Systems, 2016, 90(5): 839−860. doi: 10.1007/s10457-016-9899-x [23] LIU W J, ZHU C J, WU J N, et al. Are rubber-based agroforestry systems effective in controlling rain splash erosion? [J]. Catena, 2016, 147: 16−24. doi: 10.1016/j.catena.2016.06.034 [24] 吴发启, 范文波. 土壤结皮与降雨溅蚀的关系研究 [J]. 水土保持学报, 2001, 15(3):1−3. doi: 10.3321/j.issn:1009-2242.2001.03.001WU F Q, FAN W B. Study on relationship of soil crust and rainfall splash [J]. Journal of Soil Water Conservation, 2001, 15(3): 1−3.(in Chinese) doi: 10.3321/j.issn:1009-2242.2001.03.001 [25] SHARMA N K, SINGH R J, MANDAL D, et al. Increasing farmer's income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India [J]. Agriculture, Ecosystems & Environment, 2017, 247: 43−53. [26] 张治伟, 朱章雄, 王燕, 等. 岩溶坡地不同利用类型土壤入渗性能及其影响因素 [J]. 农业工程学报, 2010, 26(6):71−76. doi: 10.3969/j.issn.1002-6819.2010.06.013ZHANG Z W, ZHU Z X, WANG Y, et al. Soil infiltration capacity and its influencing factors of different land use types in Karst slope [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 71−76.(in Chinese) doi: 10.3969/j.issn.1002-6819.2010.06.013 [27] 刘风华, 代智光, 费良军. 容重对红壤条件下涌泉根灌水分入渗能力影响 [J]. 水土保持学报, 2019, 33(1):86−90, 97.LIU F H, DAI Z G, FEI L J. The influence of bulk density on water infiltration capacity in red soil under surge-root irrigation [J]. Journal of Soil and Water Conservation, 2019, 33(1): 86−90, 97.(in Chinese) [28] 李卓, 吴普特, 冯浩, 等. 容重对土壤水分入渗能力影响模拟试验 [J]. 农业工程学报, 2009, 25(6):40−45. doi: 10.3969/j.issn.1002-6819.2009.06.007LI Z, WU P T, FENG H, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6): 40−45.(in Chinese) doi: 10.3969/j.issn.1002-6819.2009.06.007 [29] BAMUTAZE Y, TENYWA M M, MAJALIWA M J G, et al. Infiltration characteristics of volcanic sloping soils on Mt. Elgon, Eastern Uganda [J]. Catena, 2010, 80(2): 122−130. doi: 10.1016/j.catena.2009.09.006 [30] 刘建霞, 马理, 李博文, 等. 不同种植年限黄瓜温室土壤理化性质的变化规律 [J]. 水土保持学报, 2013, 27(5):164−168. doi: 10.3969/j.issn.1009-2242.2013.05.032LIU J X, MA L, LI B W, et al. Variation of soil physicochemical properties in cucumber greenhouse under different cultivating years [J]. Journal of Soil and Water Conservation, 2013, 27(5): 164−168.(in Chinese) doi: 10.3969/j.issn.1009-2242.2013.05.032 [31] 刘目兴, 聂艳, 于婧. 不同初始含水率下粘质土壤的入渗过程 [J]. 生态学报, 2012, 32(3):871−878. doi: 10.5846/stxb201103300412LIU M X, NIE Y, YU J. The infiltration process of clay soil under different initial soil water contents [J]. Acta Ecologica Sinica, 2012, 32(3): 871−878.(in Chinese) doi: 10.5846/stxb201103300412 [32] DE ALMEIDA W S, PANACHUKI E, DE OLIVEIRA P T S, et al. Effect of soil tillage and vegetal cover on soil water infiltration [J]. Soil and Tillage Research, 2018, 175: 130−138. doi: 10.1016/j.still.2017.07.009 [33] 刘洁, 李贤伟, 纪中华, 等. 元谋干热河谷三种植被恢复模式土壤贮水及入渗特性 [J]. 生态学报, 2011, 31(8):2331−2340.LIU J, LI X W, JI Z H, et al. Soil water holding capacities and infiltration characteristics of three vegetation restoration models in dry-hot valley of Yuanmou [J]. Acta Ecologica Sinica, 2011, 31(8): 2331−2340.(in Chinese)