Effects of Biochar Addition on Phenolic Acids and Microbial Community in Rhizosphere Soil at Continuous Cropping Field of Tobacco
-
摘要:
目的 以连作植烟根际土壤为研究对象,探明生物炭对不同生育期烤烟根际土壤中与化感自毒密切相关的7种酚酸(阔马酸、对羟基苯甲酸、香草酸、丁香酸、4-香豆酸、阿魏酸、肉桂酸)及土壤微生物群落结构的影响,为缓解化感自毒引起的烟草连作障碍提供理论依据。 方法 采用HPLC检测和高通量测序技术分析了不同施肥处理烤烟各生育时期根际土壤中酚酸物质含量和土壤微生物的变化情况。 结果 不同施肥处理后烤烟各生育时期根际土壤中均检测出6种酚酸类物质,除肉桂酸变化不明显外,对羟基苯甲酸、香草酸、丁香酸、4-香豆酸、阿魏酸的含量在各生育期均表现为生物炭处理低于常规施肥处理;且施用生物炭后酚酸物质的总量在团棵期、旺长期和采烤期较常规施肥处理分别降低了1.86%、11.36%和40.44%。生物炭能在一定程度上提升烤烟根际土壤微生物群落的多样性与丰富度,旺长期生物炭处理细菌、真菌OTU丰度分别是常规施肥处理的1.23倍和1.07倍;与常规施肥处理相比,生物炭处理的细菌Shannon、ACE和Chao1指数旺长期分别提升了12.43%、23.0%和23.0%,采烤期分别提升了0.32%、2.40%和1.25%;真菌Shannon、ACE和Chao1指数旺长期分别提升了6.54%、6.67%和7.43%,采烤期分别提升了57.93%、8.60%和26.37%。 结论 生物炭对植烟土壤有一定的改良与提质效应,有利于创造健康的根际微生态环境,缓解化感自毒引起的连作障碍。 Abstract:Objective Effects of biochar addition on the microbial community and phenolic acids in rhizosphere soil at site of continuous-cropping of tobacco at various growth stages were investigated. Method The changes on the contents of 7 phenolic acids and microbial communities in the rhizosphere soil under conventional and biochar-added fertilizations were determined by HPLC and high-throughput sequencing techniques for the analysis. Result Six out of the 7 phenolic acids were detected in the soil specimens at all tobacco growth stages. With the addition of biochar in the fertilizer, aside from cinnamic acid that showed no significant variation, the contents of p-hydroxybenzoic acid, vanillic acid, syringic acid, 4-coumaric acid, and ferulic acid in the soil were lower than those under the control treatment of conventional fertilization. Compared to control, the total phenolic acid in the soil fertilized with added biochar decreased at the resettling, vigorous growing, and harvesting tobacco stages by 1.86%, 11.36%, and 40.44%, respectively. Biochar improved the diversity and richness of rhizosphere microbial community as well. At the vigorous tobacco growing stage, the bacteria and fungi OTU abundance under biochar treatment were 1.23 times and 1.07 times of control, respectively. Compared with the conventional fertilization, the biochar addition increased the Shannon, ACE and Chao1 indices on bacteria by 12.43%, 23.0%, and 23.0%, respectively, during the vigorous growing stage; and, by 0.32%, 2.40%, and 1.25%, respectively, during the harvesting stage. On fungi, the Shannon, ACE and Chao1 indices were raised by 6.54%, 6.67%, and 7.43%, respectively, in the vigorous growing stage; and, by 57.93%, 8.60%, and 26.37%, respectively, in the harvesting stage. Conclusion It appeared that biochar significantly improved and upgraded the tobacco-growing soil by creating a healthy micro-ecological rhizosphere. The addition also alleviated some of the detrimental effects of the allelopathic autotoxicity generated from continuous cropping. -
Key words:
- tobacco /
- obstacles in continuous cropping /
- phenolic acid /
- soil microbes
-
表 1 6种酚酸类对照品的线性关系
Table 1. Linear relationships between 6 phenolic acids and their reference standards
酚酸类物质 Phenolic acids 线性方程 Linear equation R2 阔马酸 Caramelic acid Y=7.23×105X+2.19×104 0.999 6 对羟基苯甲酸 p-hydroxybenzoic acid Y=7.68×106X 1.000 0 香草酸 Vanillic acid Y=3.86×106X 1.000 0 丁香酸 Syringic acid Y=1.33×106X 1.000 0 4-香豆酸 4-Coumaric acid Y=9.51×105X+5.25×103 0.999 2 阿魏酸 Ferulic acid Y=1.49×106X 1.000 0 肉桂酸 Cinnamic acid Y=1.19×108X−2.41×105 0.999 3 表 2 不同施肥处理后烤烟各生育时期根际土壤中酚酸类物质的含量变化
Table 2. Changes of phenolic acids in rhizosphere soil at tobacco growth stages after fertilization treatments
生长时期
Growth period处理
Treatment酚酸类物质种类 Species of phenolic acid /(μg·g−1) 阔马酸
Caramelic acid对羟基苯甲酸
p-hydroxybenzoic acid香草酸
Vanillic acid丁香酸
Syringic acid4-香豆酸
4-Coumaric acid阿魏酸
Ferulic acid肉桂酸
Cinnamic acid总量
Total amount团棵期
Resettling stageT1 - 0.82±0.035 d 0.24±0.036 c 1.00±0.058 d 6.99±0.151 d 0.25±0.045 d 0.39±0.055 a 9.69±0.275 d T2 - 0.81±0.005 d 0.29±0.012 b 0.87±0.023 e 6.91±0.015 d 0.23±0.006 d 0.40±0.015 a 9.52±0.032 d 旺长期
Vigorous growing stageT1 - 1.2±0.072 a 0.47±0.032 a 1.57±0.025 a 12.15±0.086 a 0.45±0.049 c 0.36±0.047 a 16.21±0.206 a T2 - 0.97±0.031 b 0.45±0.029 a 1.38±0.026 b 10.86±0.070 b 0.36±0.047 c 0.34±0.049 a 14.36±0.147 c 采烤期
Harvesting stageT1 - 0.90±0.006 c 0.31±0.021 b 1.31±0.021 c 9.96±0.066 c 2.55±0.079 a 0.35±0.038 a 15.38±0.026 b T2 - 0.46±0.030 e 0.07±0.006 d 0.68±0.057 f 6.30±0.025 e 1.3±0.035 b 0.35±0.015 a 9.16±0.083 e 注:T1为常规施肥处理,T2为生物炭处理;“-”表示该类物质未被检出;同列数字后不同字母表示差异显著 (P<0.05)。
Note: T1 is conventional fertilization; T2, fertilization with added biochar; “-” indicates substance not detected; data with different letters indicate significant difference between treatments at P<0.05.表 3 细菌OTU丰度和Alpha多样性
Table 3. Bacteria OTU abundance and alpha diversity index
生长时期
Growth period处理
Treatment原始序列数
Raw number有效序列数
Effective numberOTU丰度
OTU abundanceAlpha多样性 Alpha diversity 覆盖度
Coverage/%Shannon Simpson ACE Chao1 团棵期 Resettling stage T1 40 641 34 217 2 396 6.10 0.006 2 2 290.60 2 333.31 98.62 T2 47 715 38 864 2 494 5.94 0.008 0 2 343.31 2 336.02 98.77 旺长期 Vigorous growing stage T1 39 969 31 587 2 258 5.09 0.036 2 2 219.44 2 231.73 98.29 T2 42 595 32 361 2 782 5.72 0.019 0 2 729.95 2 740.30 98.01 采烤期 Harvesting stage T1 38 873 29 074 2 651 6.19 0.005 9 2 504.00 2 532.72 98.09 T2 34 332 25 847 2 655 6.21 0.006 4 2 564.08 2 564.33 97.75 注:T1为常规施肥处理,T2为生物炭处理,表4同。
Note: T1 is conventional fertilization; T2, fertilization with added biochar. Same for Table 4.表 4 真菌OTU丰度和Alpha多样性
Table 4. Fungi OTU abundance and alpha diversity index
生长时期
Growth period处理
Treatment原始序列数
Raw number有效序列数
Effective numberOTU丰度
OTU abundanceAlpha多样性 Alpha diversity 覆盖度Coverage/% Shannon Simpson ACE Chao1 团棵期 Resettling stage T1 63 560 62 976 1 243 3.56 0.100 4 838.31 826.40 99.77 T2 67 763 66 909 1 111 3.32 0.088 5 804.76 797.89 99.75 旺长期 Vigorous growing stage T1 56 003 54 716 1 649 3.82 0.056 6 1 325.78 1 314.58 99.41 T2 69 341 67 164 1 771 4.07 0.045 6 1 414.15 1 412.23 99.51 采烤期 Harvesting stage T1 62 965 62 697 808 1.64 0.488 1 846.60 710.98 99.71 T2 65 160 64 659 1 171 2.59 0.275 9 919.37 898.43 99.68 -
[1] 石秋环, 焦枫, 耿伟, 等. 烤烟连作土壤环境中的障碍因子研究综述 [J]. 中国烟草学报, 2009, 15(6):81−84. doi: 10.3969/j.issn.1004-5708.2009.06.017SHI Q H, JIAO F, GENG W, et al. An overview on research into factors hindering continuous cropping in flue-cured tobacco [J]. Acta Tabacaria Sinica, 2009, 15(6): 81−84.(in Chinese) doi: 10.3969/j.issn.1004-5708.2009.06.017 [2] 晋艳, 杨宇虹, 段玉琪, 等. 烤烟连作对烟叶产量和质量的影响研究初报 [J]. 烟草科技, 2002, 35(1):41−45. doi: 10.3969/j.issn.1002-0861.2002.01.016JIN Y, YANG Y H, DUAN Y Q, et al. Influence of continuous cropping on yield and quality of flue-cured tobacco [J]. Tobacco Science & Technology, 2002, 35(1): 41−45.(in Chinese) doi: 10.3969/j.issn.1002-0861.2002.01.016 [3] 刘艳霞, 李想, 蔡刘体, 等. 烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响 [J]. 植物营养与肥料学报, 2016, 22(2):418−428. doi: 10.11674/zwyf.14493LIU Y X, LI X, CAI L T, et al. Identification of phenolic acids in tobacco root exudates and their role in the growth of rhizosphere microorganisms [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 418−428.(in Chinese) doi: 10.11674/zwyf.14493 [4] 李雪萍, 李建宏, 漆永红, 等. 青稞根腐病对根际土壤微生物及酶活性的影响 [J]. 生态学报, 2017, 37(17):5640−5649.LI X P, LI J H, QI Y H, et al. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity [J]. Acta Ecologica Sinica, 2017, 37(17): 5640−5649.(in Chinese) [5] 杜家方, 尹文佳, 李娟, 等. 连作地黄根际土壤中酚酸类物质的动态变化 [J]. 中国中药杂志, 2009, 34(8):948−952. doi: 10.3321/j.issn:1001-5302.2009.08.004DU J F, YIN W J, LI J, et al. Dynamic change of phenolic acids in soils around rhizosphere of replanted Rehmannia glutinosa [J]. China Journal of Chinese Materia Medica, 2009, 34(8): 948−952.(in Chinese) doi: 10.3321/j.issn:1001-5302.2009.08.004 [6] 田给林, 毕艳孟, 孙振钧, 等. 酚酸类物质在作物连作障碍中的化感效应及其调控研究进展 [J]. 中国科技论文, 2016, 11(6):699−705. doi: 10.3969/j.issn.2095-2783.2016.06.022TIAN G L, BI Y M, SUN Z J, et al. Progressin allelopathic effect and regulation of phenolic acids for continuous cropping obstacle system [J]. China Sciencepaper, 2016, 11(6): 699−705.(in Chinese) doi: 10.3969/j.issn.2095-2783.2016.06.022 [7] 马云华, 王秀峰, 魏珉, 等. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响 [J]. 应用生态学报, 2005, 16(11):145−149.MA Y H, WANG X F, WEI M, et al. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities [J]. Chinese Journal of Applied Ecology, 2005, 16(11): 145−149.(in Chinese) [8] 郑军辉. 大豆连作障碍中自毒作用的研究[D]. 杭州: 浙江大学, 2003.ZHENG J H. Study on the autotoxicity of soybean continuous cropping obstacles[D]. Hangzhou: Zhejiang University, 2003.(in Chinese) [9] 田给林.连作草莓土壤酚酸类物质的化感作用及其生物调控研究[D].北京: 中国农业大学, 2015.TIAN G L. Allelopathic effects and biological regulation of phenolic acids in strawberry soils[D]. Beijing: China Agricultural University, 2015.(in Chinese) [10] 吴立洁. 三七根际土壤中酚酸类物质化感作用及其干预措施研究[D]. 北京: 北京中医药大学, 2014.WU L J. Study on allelopathic effects of phenolic acids in the rhizosphere soil of Panax notoginseng and its intervention measures[D]. Beijing: Beijing University of Chinese Medicine, 2014.(in Chinese) [11] 白羽祥, 杨成翠, 史普酉, 等. 连作植烟土壤酚酸类物质变化特征及其与主要环境因子的Mantel Test分析 [J]. 中国生态农业学报(中英文), 2019, 27(3):369−379.BAI Y X, YANG C C, SHI P Y, et al. Correlation analysis of main environmental factors and phenolic acids in continuous tobacco cropping soils using Mantel Test [J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 369−379.(in Chinese) [12] 柯文辉. 烟草连作障碍的根际微生态研究[D]. 福州: 福建农林大学, 2009.KE W H. Studies on rhizospheric microecology of continuous tobacco cropping obstacle[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009.(in Chinese) [13] 万海涛, 刘国顺, 田晶晶, 等. 生物炭改土对植烟土壤理化性状动态变化的影响 [J]. 山东农业科学, 2014, 46(4):72−76. doi: 10.3969/j.issn.1001-4942.2014.04.019WAN H T, LIU G S, TIAN J J, et al. Effect of biochar for soil amendment on dynamic variation of tobacco soil physical and chemical properties [J]. Shandong Agricultural Sciences, 2014, 46(4): 72−76.(in Chinese) doi: 10.3969/j.issn.1001-4942.2014.04.019 [14] 邵慧芸, 张阿凤, 李紫玥, 等. 生物炭对烤烟生长、根际土壤性质及叶片重金属含量的影响 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(8):56−53, 64.SHAO H Y, ZHANG A F, LI Z Y, et al. Effects of biochar amendment on tobacco growth, rhizosphere soil properties and heavy metals contents in tobacco leaf [J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(8): 56−53, 64.(in Chinese) [15] WANG Y F, PAN F B, WANG G S, et al. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions [J]. Scientia Horticulturae, 2014, 175: 9−15. doi: 10.1016/j.scienta.2014.05.029 [16] ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils [J]. Plant Disease, 2011, 95(95): 960−966. [17] 吴立洁, 刘杰, 王文祎, 等. 三七根际土壤中酚酸类物质的鉴定及含量测定 [J]. 世界科学技术-中医药现代化, 2014, 16(4):825−829.WU L J, LIU J, WANG W Y, et al. Identification and content determination of phenolic acids of rhizosphere soil of Panax notoginseng [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2014, 16(4): 825−829.(in Chinese) [18] CAPORASO J G, LAUBER C L, WALTERS W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S1): 4516−4522. doi: 10.1073/pnas.1000080107 [19] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604 [20] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy [J]. Applied and Environmental Microbiology, 2007, 73(16): 5261−5267. doi: 10.1128/AEM.00062-07 [21] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215(3): 403−410. doi: 10.1016/S0022-2836(05)80360-2 [22] 白羽祥, 杨焕文, 徐照丽, 等. 连作植烟土壤中酚酸物质与土壤因子的关系分析 [J]. 浙江农业学报, 2018, 30(11):1907−1914. doi: 10.3969/j.issn.1004-1524.2018.11.14BAI Y X, YANG H W, XU Z L, et al. Relationship within phenolic acids and soil properties in continuous cropping tobacco soil [J]. Acta Agriculturae Zhejiangensis, 2018, 30(11): 1907−1914.(in Chinese) doi: 10.3969/j.issn.1004-1524.2018.11.14 [23] 王成己, 唐莉娜, 黄毅斌. 生物质炭调控烟草连作障碍的研究进展 [J]. 福建农业科技, 2018(4):7−12.WANG C J, TANG L N, HUANG Y B. Progress in the regulation effects of biochar on continuous cropping obstacles in tobacco [J]. Fujian Agricultural Science and Technology, 2018(4): 7−12.(in Chinese) [24] 张相锋, 杨晓绒, 焦子伟. 生物炭在连作障碍治理中的应用综述 [J]. 现代园艺, 2018(19):82−85. doi: 10.3969/j.issn.1006-4958.2018.19.046ZHANG X F, YANG X R, JIAO Z W. Review on the application of biochar in the treatment of continuous cropping obstacles [J]. Xiandai Horticulture, 2018(19): 82−85.(in Chinese) doi: 10.3969/j.issn.1006-4958.2018.19.046 [25] 杨宇虹, 陈冬梅, 晋艳, 等. 不同肥料种类对连作烟草根际土壤微生物功能多样性的影响 [J]. 作物学报, 2011, 37(1):105−111.YANG Y H, CHEN D M, JIN Y, et al. Effects of different fertilizers on functional diversities of microbial flora in rhizospheric soil of monoculture tobacco [J]. Acta Agronomica Sinica, 2011, 37(1): 105−111.(in Chinese) [26] 马艳, 王光飞. 生物炭防控植物土传病害研究进展 [J]. 中国土壤与肥料, 2014(6):14−20. doi: 10.11838/sfsc.20140603MA Y, WANG G F. Review of biochar utilization on soil-borne disease control [J]. Soil and Fertilizer Sciences in China, 2014(6): 14−20.(in Chinese) doi: 10.11838/sfsc.20140603 [27] 李成江, 李大肥, 周桂夙, 等. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响 [J]. 作物学报, 2019, 45(2):289−296. doi: 10.3724/SP.J.1006.2019.01105LI C J, LI D F, ZHOU G S, et al. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289−296.(in Chinese) doi: 10.3724/SP.J.1006.2019.01105 [28] 孙敬国, 孙光伟, 王昌军, 等. 生物质炭对植烟土壤改良及烟叶品质的影响 [J]. 山西农业科学, 2017, 45(9):1557−1560. doi: 10.3969/j.issn.1002-2481.2017.09.38SUN J G, SUN G W, WANG C J, et al. Effects of biochar on soil improvement and tobacco leaf quality [J]. Journal of Shanxi Agricultural Sciences, 2017, 45(9): 1557−1560.(in Chinese) doi: 10.3969/j.issn.1002-2481.2017.09.38