• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-聚谷氨酸对面团面筋网络结构的影响

艾丽丝 李天骄 但阿康 林向阳

艾丽丝,李天骄,但阿康,等. γ-聚谷氨酸对面团面筋网络结构的影响 [J]. 福建农业学报,2020,35(1):90−102 doi: 10.19303/j.issn.1008-0384.2020.01.013
引用本文: 艾丽丝,李天骄,但阿康,等. γ-聚谷氨酸对面团面筋网络结构的影响 [J]. 福建农业学报,2020,35(1):90−102 doi: 10.19303/j.issn.1008-0384.2020.01.013
AI L S, LI T J, DAN A K, et al. Gluten Network of Dough Affected by Addition of γ-Polyglutamic Acid [J]. Fujian Journal of Agricultural Sciences,2020,35(1):90−102 doi: 10.19303/j.issn.1008-0384.2020.01.013
Citation: AI L S, LI T J, DAN A K, et al. Gluten Network of Dough Affected by Addition of γ-Polyglutamic Acid [J]. Fujian Journal of Agricultural Sciences,2020,35(1):90−102 doi: 10.19303/j.issn.1008-0384.2020.01.013

γ-聚谷氨酸对面团面筋网络结构的影响

doi: 10.19303/j.issn.1008-0384.2020.01.013
基金项目: 福建省新世纪优秀人才支持计划项目(XSJRC2007-23)
详细信息
    作者简介:

    艾丽丝(1995−),女,硕士研究生,研究方向:食品工程(E-mail:759620681@qq.com

    通讯作者:

    林向阳(1968−),男,博士,教授,研究方向:食物资源综合开发与利用(E-mail:925400384@qq.com

  • 中图分类号: TS 202.3

Gluten Network of Dough Affected by Addition of γ-Polyglutamic Acid

  • 摘要:   目的  了解和面过程中添加γ-聚谷氨酸对面团面筋网络结构的影响,为γ-聚谷氨酸在烘焙食品中的合理应用提供参考。  方法  以γ-聚谷氨酸的添加量为变量,利用核磁共振及核磁共振成像技术观察面团内部水分含量和状态的变化,结合质构仪和环境扫描电镜技术进一步对面团的质构特性、拉伸特性及微观结构进行分析;设置不同γ-聚谷氨酸添加量处理,在和面过程的不同时间进行取样,研究面团制作的不同阶段γ-聚谷氨酸对其面筋网络结构的影响。  结果  添加0.3%的γ-聚谷氨酸时,质子密度M21M22最大,表明有更多的水分截留在蛋白质-淀粉形成的网络结构中;质子密度成像结果也显示出密集且均匀的红色部分;质构特性及电镜成像与核磁共振测定结果一致,并且γ-聚谷氨酸会延长面团完成时间,其面筋网络结构最稳定。试验结果表明,当γ-聚谷氨酸的添加量为0.3%、和面时间为23 min时,面团品质最佳。  结论  在面包的和面过程中添加适量的γ-聚谷氨酸,有利于提高面团的品质,但过量的γ-聚谷氨酸则会影响面团的品质。
  • 图  1  面团的横向弛豫时间T2分布

    Figure  1.  Transverse relaxation time T2 of dough

    图  2  不同γ-PGA添加量对质子密度M21的影响

    注:图中不同字母代表不同处理在0.05水平存在显著差异(P<0.05),下同。

    Figure  2.  Effect of γ-polyglutamic acid additions on proton density M21

    Note: Different lowercase letters on columns indicate significant difference between treatments at P<0.05, the same as following charts.

    图  3  不同γ-PGA添加量对质子密度M22的影响

    Figure  3.  Effect of γ-polyglutamic acid additions on proton density M22

    图  4  不同γ-PGA添加量对质子密度M23的影响

    Figure  4.  Effect of γ-Polyglutamic acid additions on proton density M23

    图  5  不同γ-PGA添加量对面团弛豫时间T23的影响

    Figure  5.  Effect of γ-polyglutamic acid additions on dough relaxation time T23

    图  6  γ-PGA添加量不同时面团的质子密度成像

    注:图中a–i表示γ-PGA添加量分别为0.0%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%。

    Figure  6.  Proton density imaging of dough with varied γ-polyglutamic acid additions

    Note: a–i, the addition of γ-PGA is 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%.

    图  7  γ-PGA添加量对面团TPA质构特性的影响

    Figure  7.  Effect of additions of γ-polyglutamic acid on texture of dough

    图  8  γ-PGA添加量对面团拉伸特性的影响

    Figure  8.  Effect of γ-polyglutamic acid additions on tensile properties of dough

    图  9  γ-PGA添加量不同时面团的环境扫描电镜成像(×1 000)

    注:图中a–i表示γ-PGA添加量分别为0.0%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%。

    Figure  9.  Environmental scanning electron microscope imaging of dough with varied γ-polyglutamic acid additions

    Note: a–i, the addition of γ-PGA is 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%.

    图  10  和面过程中不同γ-PGA添加量下面团的弛豫时间T21

    Figure  10.  Relaxation time T21 of dough with varied γ-polyglutamic acid additions

    图  11  和面过程中不同γ-PGA添加量下面团的质子密度M21

    Figure  11.  Proton density M21 of dough with varied γ-polyglutamic acid additions

    图  12  γ-PGA添加量下不同面团的质子密度成像

    注:a–e:γ-PGA添加0.0%,和面时间分别为2、11、17、27和35 min;f–j:γ-PGA添加0.3%,和面时间分别为2、11、21、29 和35 min;k–o:γ-PGA添加0.7%,和面时间分别为2、11、19、23和35 min。

    Figure  12.  Surface proton density imaging of doughs with added γ-polyglutamic acid at 3 levels

    Note:a–e:The addition of γ-PGA is 0%, the dough time is 2 , 11, 17 , 27, 35 min;f–j:The addition of γ-PGA is 0.3%, the dough time is 2, 11, 21, 29, 35 min;k–o:The addition of γ-PGA is 0.7%,the dough time is 2, 11, 19, 23, 35 min.

    图  13  和面过程中面团硬度的变化

    Figure  13.  Changes in dough hardness during dough mixing

    图  14  和面过程中面团粘聚性的变化

    Figure  14.  Changes in dough cohesiveness during dough mixing

    图  15  和面过程中面团回复性的变化

    Figure  15.  Changes in dough recoverability during dough mixing

    图  16  γ-PGA添加量为0.3% 时不同和面时间下的面团环境扫描电镜成像(×1 000)

    注:a~e分别表示和面2、11、21、29、35 min。

    Figure  16.  SEM images of dough with 0.3% γ-polyglutamic acid at stages of dough-formation (×1 000)

    Note: a–e represents 2, 11, 21, 29, 35 min, respectively.

    表  1  不同γ-PGA添加量下面团的弛豫时间T23与质构特性的相关性

    Table  1.   Correlation between relaxation time T23 and texture of dough with varied γ-polyglutamic acid additions

    控制变量
    Control variables
    质构特性 Texture properties
    硬度 Hardness/g粘聚性 Cohesiveness回复性 Resilience胶着性 Gumminess咀嚼性 Chewiness/g
    T23皮尔森相关系数 Pearson0.278−0.882**−0.873**−0.786*−0.519
    显著性(双侧)Significant(two sides)0.4680.0020.0020.0120.152
    n99999
    注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。表2~4同。
    Note: ** indicates significant correlation at the 0.01 level (both sides); * indicates significant correlation at the 0.05 level (both sides). The same as Table 2–4.
    下载: 导出CSV

    表  2  不同 γ-PGA添加量下面团的质子密度与拉伸特性的相关性分析

    Table  2.   Correlation analysis of proton density and tensile properties of dough with varied γ-polyglutamic acid additions

    控制变量
    Control variables
    质子密度 Proton density
    M21M22M23
    拉断力 Tensile force/g皮尔森相关系数 Pearson0.856**0.682*−0.711*
    显著性(双侧)Significant (two sides)0.0300.0430.032
    n999
    下载: 导出CSV

    表  3  和面阶段M21变化与质构特性变化的相关性

    Table  3.   Correlation between M21 and texture of dough in formation

    控制变量 Control variables质构特性 Texture properties
    硬度 Hardness/g粘聚性 Cohesiveness回复性 Resilience
    M21皮尔森相关系数 Pearson0.3370.564*0.620*
    显著性(双侧)Significant(two sides)0.2600.0450.024
    n131313
    下载: 导出CSV

    表  4  γ-PGA添加量和最佳和面时间的相关性

    Table  4.   Correlation of γ-polyglutamic acid addition and optimal dough-formation time

    控制变量
    Control variables
    最佳和面时间
    Best dough time/min
    γ-PGA添加量
    γ-PGA addition/%
    皮尔森相关系数 Pearson0.805**
    显著性(双侧)
    Significant(two sides)
    0.009
    n9
    下载: 导出CSV

    表  5  γ-PGA添加量和最佳和面时间的曲线估计

    Table  5.   Estimation curve for optimal dough-formation time in relation to γ-polyglutamic acid addition

    方程 Equation模型汇总 Model summary 参数估计值 Parameter estimate
    R2Fdf1df2Sig. 常数 constantb1b2b3
    线性 Linear 0.648 12.887 1 7 0.009 18.911 7.167
    二次 Quadratic 0.942 49.096 2 6 0.000 16.921 24.223 −21.320
    三次 Cubic 0.943 27.372 3 5 0.002 16.879 25.137 −24.351 2.525
    复合 Compound 0.651 13.064 1 7 0.009 18.830 1.417
    增长 Growth 0.651 13.064 7 7 0.009 2.935 0.349
    指数 Exponential 0.651 13.064 7 7 0.009 18.830 0.349
    逻辑 Logistic 0.651 13.064 7 7 0.009 0.053 0.706
    下载: 导出CSV
  • [1] 李超然, 吴坤, 刘燕琪, 等. γ-聚谷氨酸对面团性质及面条质构特性的影响 [J]. 河南农业大学学报, 2014, 48(2):204−209.

    LI C R, WU K, LIU Y Q, et al. Effect of γ-PGA on the dough properties and noodle texture [J]. Journal of Henan Agricultural University, 2014, 48(2): 204−209.(in Chinese)
    [2] 范逸超, 谢新华, 沈玥, 等. γ-聚谷氨酸对小麦淀粉糊化及流变学特性的影响 [J]. 中国粮油学报, 2019, 34(5):33−37. doi: 10.3969/j.issn.1003-0174.2019.05.007

    FAN Y C, XIE X H, SHEN Y, et al. Effect of poly-γ-glutamic acid on the pasting and rheological properties of wheat starch [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5): 33−37.(in Chinese) doi: 10.3969/j.issn.1003-0174.2019.05.007
    [3] LIM S M, KIM J, SHIM J Y, et al. Effect of poly-γ-glutamic acids (PGA) on oil uptake and sensory quality in doughnuts [J]. Food Science and Biotechnology, 2012, 21(1): 247−252. doi: 10.1007/s10068-012-0032-2
    [4] SHYU Y S, HWANG J Y, HSU C K. Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid [J]. LWT - Food Science and Technology, 2008, 41(6): 982−987. doi: 10.1016/j.lwt.2007.06.015
    [5] SHYU Y S, SUNG W C. Improving the emulsion stability of sponge cake by the addition of γ-Polyglutamic acid [J]. Journal of Marine Science and Technology (Taiwan), 2010, 18(6): 895−900.
    [6] 赵凯亚, 姬晓月, 沈亚鹏, 等. 聚谷氨酸对油条特性与品质的影响 [J]. 河南工业大学学报(自然科学版), 2017, 38(4):75−80.

    ZHAO K Y, JI X Y, SHEN Y P, et al. EFFECT OF POLY-γ-GLUTAMIC ACID ON THE QUALITY OF TRADITIONAL FRIED DOUGH STICK [J]. Journal of Henan University of Technology(Natural Science Edition), 2017, 38(4): 75−80.(in Chinese)
    [7] 谢新华, 毋修远, 张蓓, 等. γ-聚谷氨酸对面筋蛋白功能特性的影响 [J]. 麦类作物学报, 2018, 38(8):1004−1009. doi: 10.7606/j.issn.1009-1041.2018.08.17

    XIE X H, WU X Y, ZHANG B, et al. Effect of γ-polyglutamic acid on functional properties of gluten protein [J]. Journal of Triticeae Crops, 2018, 38(8): 1004−1009.(in Chinese) doi: 10.7606/j.issn.1009-1041.2018.08.17
    [8] 谢新华, 毋修远, 张蓓, 等. γ-聚谷氨酸对面筋蛋白冻藏稳定性的影响 [J]. 农业机械学报, 2018, 49(7):369−374. doi: 10.6041/j.issn.1000-1298.2018.07.045

    XIE X H, WU X Y, ZHANG B, et al. Effect of poly-γ-glutamicacid on freezing stability of gluten protein [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 369−374.(in Chinese) doi: 10.6041/j.issn.1000-1298.2018.07.045
    [9] 谢新华, 范逸超, 徐超, 等. γ-聚谷氨酸对小麦淀粉凝胶冻融稳定性的影响 [J]. 食品与发酵工业, 2019, 45(14):97−101.

    XIE X H, FAN Y C, XU C, et al. Effects of γ-polyglutamic acid on freeze-thaw stability of wheat starch gel [J]. Food and Fermentation Industries, 2019, 45(14): 97−101.(in Chinese)
    [10] 丁珊珊, 贾春利, 张峦, 等. γ-聚谷氨酸提高冷冻甜面团面包质构和感官特性研究 [J]. 食品工业科技, 2014, 35(16):308−311, 322.

    DING S S, JIA C L, ZHANG L, et al. Study on the enhancement of texture and sensory attributes of frozen sweet dough bread using γ-poly glutamic acid [J]. Science and Technology of Food Industry, 2014, 35(16): 308−311, 322.(in Chinese)
    [11] 姬晓月, 王双燕, 耿鹏, 等. γ-聚谷氨酸对速冻水饺品质的影响 [J]. 食品与发酵工业, 2018, 44(12):180−187.

    JI X Y, WANG S Y, GENG P, et al. Effect of poly-γ-glutamic acid on qualities of quick-frozen dumplings [J]. Food and Fermentation Industries, 2018, 44(12): 180−187.(in Chinese)
    [12] 宁年英, 林向阳, 林婉瑜, 等. 利用低场核磁共振研究擂溃过程对鲜猪肉糜持水性的影响 [J]. 中国食品学报, 2013, 13(2):50−59.

    NING N Y, LIN X Y, LIN W Y, et al. Using the low-field NMR to study the effect of blending on water holding capacity of fresh minced pork [J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(2): 50−59.(in Chinese)
    [13] 孙彩玲, 田纪春, 张永祥. TPA质构分析模式在食品研究中的应用 [J]. 实验科学与技术, 2007, 5(2):1−4. doi: 10.3969/j.issn.1672-4550.2007.02.001

    SUN C L, TIAN J C, ZHANG Y X. Application of TPA test mode in the study of food [J]. Experiment Science & Technology, 2007, 5(2): 1−4.(in Chinese) doi: 10.3969/j.issn.1672-4550.2007.02.001
    [14] 李妍, 林向阳, 叶南慧, 等. 利用核磁共振技术研究海带面团面筋网络结构形成过程 [J]. 中国食品学报, 2014, 14(12):39−48.

    LI Y, LIN X Y, YE N H, et al. Using the low-field NMR to study the formation of gluten network structure of kelp dough [J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(12): 39−48.(in Chinese)
    [15] KILBORN R H, TIPPLES K H. Implications of the Mechanical Development of Bread Dough by Means of Sheeting Rolls [J]. Cereal Chemistry, 1974, 51(5): 648−657.
    [16] ROSS K A, PYRAK-NOLTE L J, CAMPANELLA O H. The use of ultrasound and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of dough [J]. Food Research International, 2004, 37(6): 567−577. doi: 10.1016/j.foodres.2004.02.013
    [17] ZHENG H, MORGENSTERN M, CAMPANELLA O, et al. Rheological properties of dough during mechanical dough development [J]. Journal of Cereal Science, 2000, 32(3): 293−306. doi: 10.1006/jcrs.2000.0339
    [18] DOBRASZCZYK B, MORGENSTERN M. Rheology and the breadmaking process [J]. Journal of Cereal Science, 2003, 38(3): 229−245. doi: 10.1016/S0733-5210(03)00059-6
    [19] HARASZI R, LARROQUE O R, BUTOW B J, et al. Differential mixing action effects on functional properties and polymeric protein size distribution of wheat dough [J]. Journal of Cereal Science, 2008, 47(1): 41−51. doi: 10.1016/j.jcs.2007.01.007
    [20] WOODING A R, KAVALE S, MACRITCHIE F, et al. Link between mixing requirements and dough strength [J]. Cereal Chemistry Journal, 1999, 76(5): 800−806. doi: 10.1094/CCHEM.1999.76.5.800
    [21] 贺建业, 冯雨丁. 面团的结构 [J]. 四川大学学报(自然科学版), 1998, 35(5):729−736.

    HE J Y, FENG Y D. The structure of dough [J]. Journal of Sichuan University (Natural Science Edition), 1998, 35(5): 729−736.(in Chinese)
    [22] 罗登林, 梁旭苹, 徐宝成, 等. 菊粉对面团中水分迁移行为的影响规律研究 [J]. 农业机械学报, 2017, 48(2):335−341. doi: 10.6041/j.issn.1000-1298.2017.02.045

    LUO D L, LIANG X P, XU B C, et al. Effect of inulin on moisture migration behavior in wheat dough [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 335−341.(in Chinese) doi: 10.6041/j.issn.1000-1298.2017.02.045
    [23] 林向阳. 核磁共振及成像技术在面包制品加工与储藏过程中的研究[D]. 南昌: 南昌大学, 2006.

    LIN X Y. Study of bread during processing and storage using NMR and MRI techniques[D]. Nanchang: Nanchang University, 2006.(in Chinese)
    [24] SOZER N. Rheological Properties of Rice Pasta Dough Supplemented with Proteins and Gums [J]. Food Hydrocolloids, 2009, 23(3): 849−855. doi: 10.1016/j.foodhyd.2008.03.016
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  750
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2019-11-30
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回