Improvement of Disease-resistance of Restorer Rice Lines by Transducing Genes Pi9 onto Sanming Dominant Male Sterile Lines
-
摘要:
目的 将广谱抗稻瘟病基因Pi9导入恢复系双抗明占,以提高其组合抗病能力。 方法 通过构建Pi9基因的三明显性核不育系载体作中间“架桥”,结合分子标记辅助选择,每个回交世代选择有Pi9标记基因带型的显性核不育株与双抗明占回交,至BC4F1代筛选获得检测有Pi9标记基因带型可育株自交纯合Pi9基因,获得卸载了核不育基因的双抗明占抗病近等基因系。 结果 获选的6个改良系经田间抗性鉴定有5个抗稻瘟病能力得到显著提升,进行配合力测验及农艺性状比较分析,改良系Y25-1一般配合力表现最好,抗病能力强,主要农艺性状与双抗明占相近,可作为抗病的双抗明占推广应用。 结论 通过水稻三明显性核不育系作中间“架桥”,导入Pi9基因可有效提高双抗明占及其组合抗稻瘟病能力。 Abstract:Objective To transfer the broad-spectrum rice blast resistance gene, Pi9, to the restorer line Shuangkangmingzhan for improving its disease resistance. Method The Sanming dominant male sterile line, a carrier of the Pi9 gene, was used as the intermediate “bridge” for the gene transduction experiment. Using the molecular marker assistance selection method, from each backcross generation the male sterile plants with Pi9 marker genotype were selected to backcross- mate with Shuangkangmingzhan until the self-homozygous Pi9 gene marker in the fertile plant was detected. Then, from the selected plant in the BC4F1 generation of the Shuangkangmingzhan disease-resistant isogenic line, the target sterile gene was obtained. Result Of the 6 improved lines selected, 5 were identified by the field resistance verification with significantly improved resistance to rice blast. The combining abilities and agronomic traits of the lines were compared and analyzed to show that the improved line Y25-1 possessed the best general combining ability with a strong blast resistance. Since its main agronomic traits were similar to those of Shuangkangmingzhan, it could conceivably be considered a surrogate of the disease-resistant Shuangkangmingzhan for breeding purpose. Conclusion For an improved blast resistance on rice, the successful transferring Pi9 gene from Shuangkangmingzhan onto Y25-1 through the use of the Sanming dominant male sterile line as an intermediate “bridge” provided a new venue for the breeding. -
Key words:
- rice /
- Sanming dominant male sterility /
- carrier /
- transduction /
- Pi9 /
- Shuangkangmingzhan
-
表 1 三明显性核不育基因与Pi9基因不同回交世代分离比例
Table 1. Separation rate of Sanming dominant male sterile gene and Pi9 in backcross generations
回交世代
Backcross generationPi9不育株数
Pi9 sterile plantspi9不育株数
pi9 sterile plantsPi9可育株数
Pi9 fertile plantspi9可育株数
pi9 fertile plants期望分离比
Expectation separation ratioX 2 P0.05 BC1F1 94 111 105 91 1∶1∶1∶1 2.621 7.815 BC2F1 102 108 99 114 1∶1∶1∶1 1.255 7.815 BC3F1 34 45 37 44 1∶1∶1∶1 2.159 7.815 注:X 20.05,3=7.815 表 2 双抗明占与改良株系的稻瘟病抗性表现
Table 2. Blast resistances of Shuangkangmingzhan and selected plants
亲本
Parent苗瘟
Seeding Blast叶稻瘟
Leaf Blast穗颈瘟
Panicle Blast抗性综评
Comprehensive evaluationⅠ Ⅱ 最高级别
LevelⅠ Ⅱ 最高级别
LevelⅠ Ⅱ 最高级别
Level发病率
Prevalence/%级别
Level发病率
Prevalence/%级别
Level发病率
Prevalence/%级别
Level发病率
Prevalence/%级别
Level发病率
Prevalence/%级别
Level发病率
Prevalence/%级别
Level双抗明占
Shuangkang
mingzhan8 4 7 4 4 7 4 5 4 4 11 5 12 5 5 MS Y14-1 5 4 8 4 4 2 3 3 4 4 7 3 8 3 3 MR Y17-1 7 4 6 4 4 3 4 5 4 4 17 5 14 5 5 MS Y18-1 4 3 2 3 3 0 0 0 0 0 3 1 4 1 1 R Y22-1 17 5 24 6 6 4 3 3 4 4 3 1 2 1 1 MR Y25-1 6 4 5 4 4 0 0 0 0 0 4 1 5 1 1 R Y28-1 3 3 2 3 3 0 0 0 0 0 2 1 3 1 1 R 感病对照
Control75 9 78 9 9 56 7 63 7 7 76 9 85 9 9 HS 注:MS:中感,HS:高感,MR:中抗,R:抗。
Note: MS-medium sensitive, HS-highly sensitive, MR-medium resistant, R-resistant.表 3 亲本农艺性状的一般配合力的相对效应
Table 3. Relative effect of general combining ability on agronomic traits of 11 parents
亲本
Parent株高
Plant height抽穗期
Heading date单株有效穗
Effective panicle每穗实粒数
Grains per panicle每穗总粒数
Spikelets per panicle结实率
Seed setting rate千粒重
1 000-grain weight单株产量
Grain yield per plant赣香 A Ganxiang A 6.56 2.75 14.22 6.44 1.84 4.54 11.25 33.66 泸香618A Luxiang 618A −4.19 −3.65 −4.35 −9.09 −3.05 −6.25 −1.51 −15.35 T108S 1.55 0.34 −6.54 −1.00 1.83 −2.76 −6.14 −13.76 明1A Ming 1A −3.92 0.56 −3.33 3.64 −0.61 4.47 −3.60 −4.55 双抗明占 Shuangkang
mingzhan−0.09 0.73 9.03 0.96 0.00 1.59 −1.64 9.46 Y14-1 0.00 0.04 −14.77 16.54 14.90 0.56 −0.72 1.86 Y17-1 −0.55 −0.55 0.84 −4.01 −4.25 0.56 0.36 −2.19 Y18-1 1.07 −0.74 −2.49 −2.82 −3.77 1.02 1.93 −4.80 Y22-1 0.26 0.24 −5.81 −0.61 −0.67 0.33 −1.08 −6.74 Y25-1 0.08 0.24 10.82 −7.38 −3.66 −3.70 0.80 2.57 Y28-1 −0.77 0.04 2.38 −2.67 −2.56 −0.36 0.35 −0.16 表 4 改良系及双抗明占主要农艺性状表现
Table 4. Agronomic traits of improved lines and Shuangkangmingzhan
亲本 Parent 双抗明占
Shuangkang
mingzhanY14-1 Y17-1 Y18-1 Y22-1 Y25-1 Y28-1 株高 Plant height/cm 100.3±1.2 c 104.6±0.8 a 100.0±2.1 c 101.3±0.6 bc 100.5±1.9 c 104.9±0.3 a 103.3±0.5 ab 剑叶长 Flag leaf length/cm 24.0±4.4 a 19.7±2.3 a 19.7±3.4 a 20.7±3.5 a 21.0±1.5 a 19.3±2.2 a 21.4±0.5 a 剑叶宽 Flag leaf width/cm 1.7±0.1 a 1.7±0.1 a 1.6±0.1 a 1.7±0.1 a 1.6±0.1 a 1.6±0.1 a 1.7±0.2 a 倒二叶长 Inverted second leaf length/cm 35.8±4.7 a 32.5±4.1 a 31.5±4.9 a 30.6±1.6 a 31.8±3.5 a 32.5±3.5 a 33.4±1.0 a 倒二叶宽 Inverted second leaf width/cm 1.4±0.1 a 1.3±0.1 ab 1.2±0.1 b 1.2±0.1 b 1.2±0.1 b 1.2±0.1 b 1.3±0.1 ab 穗长 Panicel length/cm 24.9±0.9 a 24.8±1.3 a 25.7±0.9 a 24.6±0.7 a 24.5±1.0 a 25.6±0.9 a 25.0±1.4 a 第1节间长 Length of the first internode/cm 1.7±0.3 b 3.0±0.3 a 3.2±1.0 a 2.8±0.4 ab 2.0±0.4 ab 2.5±0.3 ab 2.6±0.4 ab 第2节间长 Length of the second internode/cm 6.9±1.5 b 11.0±1.0 a 9.2±0.6 ab 8.3±0.9 b 8.6±2.1 ab 8.1±1.5 b 8.2±1.7 b 第3节间长 Length of the third internode/cm 10.2±0.2 b 12.7±0.1 a 12.7±0.4 a 12.9±0.6 a 12.4±1.2 a 12.8±0.3 a 12.6±0.6 a 第4节间长 Length of the fourth internode/cm 18.5±1.0 a 19.2±1.4 a 18.7±0.5 a 19.0±0.4 a 19.4±0.6 a 19.2±1.2 a 19.4±0.8 a 第5节间长 Length of the fifth internode/cm 36.9±3.2 a 34.5±0.8 ab 32.9 ±3.0 b 34.4±0.8 ab 34.2±1.1 ab 34.6±0.5 ab 34.6±0.6 ab 茎粗 Stem diameter/cm 0.57±0.1 a 0.55±0.1 a 0.57±0.1 a 0.53±0.1 a 0.53±0.1 a 0.57±0.1 a 0.53±0.1 a 单株有效穗 Effective panicle/穗 11.1±0.3 a 8.9±0.7 cd 9.0±0.4 cd 9.4±0.3 bc 8.9±0.3 cd 10.2±0.3 ab 8.2±0.7 d 每穗总粒数 Spikelets per panicle/粒 156.7±3.2 cd 163.1±1.6 b 168.5±2.3 a 158.6±0.7 c 151.7±0.9 e 153.0±1.3 de 172.4±2.4 a 每穗实粒数 Grains per panicle/粒 130.6±0.9 a 128.3±1.1 a 130.7±1.7 a 128.3±1.0 a 116.6±1.8 b 128.4±1.5 a 127.8±0.7 a 结实率 Seed setting rate/% 83.5±1.7 a 79.5±1.8 bc 77.5±1.1 c 80.5±0.9 b 77.4±1.0 c 84.6±0.8 a 74.4±0.6 d 千粒重1 000-grain weight/g 24.73±0.1 a 24.50±0.2 ab 23.94±0.1 cd 24.21±0.1 bc 23.70±0.1 d 24.36±0.2 b 23.91±0.1 cd 注:同行数据后不同小写字母表示差异显著(P<0.05)。
Note: Data with different lowercase letters on a same line indicate significant difference at P<0.05. -
[1] 王军, 赵婕宇, 许扬, 等. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用 [J]. 作物学报, 2018, 44(11):1612−1620. doi: 10.3724/SP.J.1006.2018.01612WANG J, ZHAO J Y, XU Y, et al. Development and application of functional markers for rice blast resistance gene bsr-d1 in rice [J]. Acta Agronomica Sinica, 2018, 44(11): 1612−1620.(in Chinese) doi: 10.3724/SP.J.1006.2018.01612 [2] QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901−1914. doi: 10.1534/genetics.105.044891 [3] 刘士平, 李信, 汪朝阳, 等. 基因聚合对水稻稻瘟病的抗性影响 [J]. 分子植物育种, 2003, 1(1):22−26. doi: 10.3969/j.issn.1672-416X.2003.01.003LIU S P, LI X, WANG Z Y, et al. Gene pyramiding to increase the blast resistance in rice [J]. Molecular Plant Breeding, 2003, 1(1): 22−26.(in Chinese) doi: 10.3969/j.issn.1672-416X.2003.01.003 [4] BERRUYER R, ADREIT H, MILAZZO J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1 [J]. Theoretical and Applied Genetics, 2003, 107(6): 1139−1147. doi: 10.1007/s00122-003-1349-2 [5] 张礼霞, 王林友, 范宏环, 等. 利用Pigm基因改良粳稻保持系的稻瘟病抗性研究 [J]. 核农学报, 2017, 31(3):424−431. doi: 10.11869/j.issn.100-8551.2017.03.0424ZHANG L X, WANG L Y, FAN H H, et al. Study on improving rice blast resistance of Japonica maintainer line by introducing pigm gene [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 424−431.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.03.0424 [6] 向小娇, 张建, 郑天清, 等. 应用分子标记技术改良京作1号的稻瘟病抗性 [J]. 植物遗传资源学报, 2016, 17(4):773−780.XIANG X J, ZHANG J, ZHENG T Q, et al. Improving blast resistance of Jingzuo1 using molecular marker technique [J]. Journal of Plant Genetic Resources, 2016, 17(4): 773−780.(in Chinese) [7] 文绍山, 高必军. 利用分子标记辅助选择将抗稻瘟病基因Pi-9(t)渗入水稻恢复系泸恢17 [J]. 分子植物育种, 2012, 10(1):42−47. doi: 10.3969/mpb.010.000042WEN S S, GAO B J. Introgressing blast resistant gene Pi-9(t) into elite rice restorer Luhui17 by marker-assisted selection [J]. Molecular Plant Breeding, 2012, 10(1): 42−47.(in Chinese) doi: 10.3969/mpb.010.000042 [8] 肖武名, 孙大元, 王慧, 等. 分子标记选育稻瘟病和白叶枯病双抗种质 [J]. 华北农学报, 2014, 29(1):203−207. doi: 10.7668/hbnxb.2014.01.036XIAO W M, SUN D Y, WANG H, et al. MAS breeding for rice accessions showing resistance to blast and bacterial blight [J]. Acta Agriculturae Boreali-Sinica, 2014, 29(1): 203−207.(in Chinese) doi: 10.7668/hbnxb.2014.01.036 [9] 陈建民, 付志英, 权宝权, 等. 分子标记辅助培育双抗稻瘟病和白叶枯病杂交稻恢复系 [J]. 分子植物育种, 2009, 7(3):465−470.CHEN J M, FU Z Y, QUAN B Q, et al. Breeding hybrid rice restoring line with double resistance to rice blast and bacterial blight by marker-assisted selection [J]. Molecular Plant Breeding, 2009, 7(3): 465−470.(in Chinese) [10] 黄显波, 田志宏, 邓则勤, 等. 水稻三明显性核不育基因的初步鉴定 [J]. 作物学报, 2008, 34(10):1865−1868. doi: 10.3321/j.issn:0496-3490.2008.10.026HUANG X B, TIAN Z H, DENG Z Q, et al. Preliminary identification of a novel Sanming dominant male sterile gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2008, 34(10): 1865−1868.(in Chinese) doi: 10.3321/j.issn:0496-3490.2008.10.026 [11] 陆光远, 张学昆, 李桂英, 等. 应用群体改良法选育高产优质抗病油菜新品种 [J]. 中国油料作物学报, 2012, 34(6):575−581.LU G Y, ZHANG X K, LI G Y, et al. Breeding of high yield, double low and disease resistant rapeseed cultivars by population improvement [J]. Chinese Journal of Oil Crop Sciences, 2012, 34(6): 575−581.(in Chinese) [12] 赵鹏, 冯冉冉, 肖巧珍, 等. 聚合抗褐飞虱基因bph20(t)和bph21(t)及抗稻瘟病基因Pi9水稻株系筛选 [J]. 南方农业学报, 2013, 44(6):885−892. doi: 10.3969/j:issn.2095-1191.2013.6.885ZHAO P, FENG R R, XIAO Q Z, et al. Pyramiding brown planthopper genes, bph20(t)and bph21(t), and rice blast resistant gene Pi9 in rice (Oryza sativa L.) [J]. Journal of Southern Agriculture, 2013, 44(6): 885−892.(in Chinese) doi: 10.3969/j:issn.2095-1191.2013.6.885 [13] 唐江霞, 林成豹, 黄显波, 等. 以三明显性核不育水稻为载体转导水稻抗稻瘟病基因Pi-9 [J]. 福建农业学报, 2013, 28(9):849−853. doi: 10.3969/j.issn.1008-0384.2013.09.003TANG J X, LIN C B, HUANG X B, et al. Transduction of rice blast resistance gene Pi-9 using Saming dominant genic male as the vector [J]. Fujian Journal of Agricultural Sciences, 2013, 28(9): 849−853.(in Chinese) doi: 10.3969/j.issn.1008-0384.2013.09.003 [14] 中华人民共和国农业部. 水稻品种试验稻瘟病抗性鉴定与评价技术规程[S]. 北京: 中国农业出版社, 2015. [15] 杨泽茂, 谢小芳, 黄显波, 等. 水稻“三明”显性核不育基因的定位 [J]. 遗传, 2012, 34(5):615−620.YANG Z M, XIE X F, HUANG X B, et al. Mapping of Sanming dominant genic male sterility gene in rice [J]. Hereditas, 2012, 34(5): 615−620.(in Chinese) [16] 刘开强, 伍豪, 颜群, 等. 水稻抗稻瘟病基因Pi1的特异性分子标记开发及利用 [J]. 西南农业学报, 2016, 29(6):1241−1244.LIU K Q, WU H, YAN Q, et al. Development and application of specific marker of blast resistance gene Pi1 in rice [J]. Southwest China Journal of Agricultural Sciences, 2016, 29(6): 1241−1244.(in Chinese) [17] 华丽霞, 汪文娟, 陈深, 等. 抗稻瘟病Pi2/9/z-t基因特异性分子标记的开发 [J]. 中国水稻科学, 2015, 29(3):305−310. doi: 10.3969/j.issn.1001-7216.2015.03.010HUA L X, WANG W J, CHEN S, et al. Development of specific DNA markers for detecting the rice blast resistance gene alleles Pi2/9/z-T [J]. Chinese Journal of Rice Science, 2015, 29(3): 305−310.(in Chinese) doi: 10.3969/j.issn.1001-7216.2015.03.010 [18] TIAN D G, CHEN Z J, CHEN Z Q, et al. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars [J]. Rice, 2016, 9: 19. doi: 10.1186/s12284-016-0091-8