Inhibitory Effects of Laminaria Japonica Polysaccharides on Proliferation and Antioxidant Activities of Vascular Smooth Muscle Cells
-
摘要:
目的 研究海带多糖对H2O2诱导血管平滑肌细胞(vascular smooth muscle cells, VSMC)增殖及胞内脂质过氧化物生成量的影响,为阐明海带多糖对VSMC的作用机制奠定基础。 方法 以H2O2为诱导剂建立体外VSMC增殖模型,通过四甲基偶氮唑盐法和细胞形态观察评价海带多糖对H2O2诱导VSMC生长和增殖的影响,同时以丙二醛为指标考察海带多糖对H2O2诱导VSMC胞内脂质过氧化物生成量的影响。 结果 以50 μmol·L−1 H2O2为诱导剂建立VSMC体外增殖模型。四甲基偶氮唑盐法测定结果表明海带多糖对H2O2诱导VSMC增殖具有显著抑制活性,最大增殖抑制率达到73.56%。细胞形态学观察结果表明海带多糖作用下H2O2诱导的VSMC生长状态发生改变且细胞数量显著减少。丙二醛检测结果表明海带多糖作用下VSMC胞内脂质过氧化物量显著减少。 结论 海带多糖能够抑制H2O2诱导的VSMC增殖,且显著降低VSMC胞内脂质过氧化物生成量。 Abstract:Objective Effects of Laminaria japonicapolysaccharides on the proliferation and lipid peroxide production of H2O2-induced vascular smooth muscle cells (VSMCs) were examined in vitro for further understanding on the metabolic mechanism. Method Proliferation of VSMCs was artificially induced by using 50 µmol·L−1 H2O2. Inhibitory rate on the proliferation by the L. japonica polysaccharides were determined by a methyl thiazolyl tetrazolium (MTT) assay. Morphological changes on VSMCs were observed under a microscope. Malondialdehyde (MDA) was employed as an indicator of the lipid peroxide production in VSMCs. Result A significant inhibition effect of the polysaccharides on the H2O2-induced VSMC proliferation with the greatest rate of 73.56% was shown by MTT. Morphologically, the number of VSMCs significantly decreased after an exposure to the polysaccharide. The MDA analysis indicated that the lipid peroxide production by VSMCs significantly declined after the treatment with L. japonica polysaccharides. Conclusion The L. japonica polysaccharides significantly inhibited the proliferation and lipid peroxide production in the H2O2-induced VSMCs. -
图 1 海带多糖对H2O2诱导VSMC增殖抑制率
注:a: 相同海带多糖预处理时间下,与0.1 mg·mL−1海带多糖试验组相比,P<0.05;b:相同海带多糖预处理浓度下,与预处理时间12 h海带多糖试验组相比,P<0.05。
Figure 1. Effects of L. japonica polysaccharides on H2O2-induced VSMC proliferation
Note: a: during the same pretreatment time of polysaccharide, indicated significant differences compared with the group of 0.1 mg·mL−1 polysaccharide, P<0.05; b: under the same concentration of polysaccharide pretreatment, indicated significant differences compared with the group of 12 h treatment with polysaccharide, P<0.05.
图 2 VSMC形态(×100)
注:A1:对照组,A2 :H2O2模型组,A3 :0.5 mg·mL−1 海带多糖+H2O2处理组,A4:1 mg ·mL−1海带多糖+H2O2处理组。
Figure 2. Morphology of VSMC (×100)
Note: A1: Control group; A2: H2O2 model group; A3: the group treatment with 0.5 mg·mL−1 polysaccharide and H2O2; A4: the group treatment with 1 mg·mL−1 polysaccharide and H2O2.
表 1 MTT测定VSMC增殖率
Table 1. Viability of VSMCs determined by MTT assay
H2O2浓度
H2O2Concentration/
(µmol·L−1)12 h 24 h 36 h 10 102.11±5.22 112.23±3.15 108.74±4.42 20 112.08±2.15 127.65±1.55 117.24±5.68 50 129.56±2.43 a 142.54±2.91 a 133.25±3.48 a 100 132.87±3.56 a 144.29±3.68 a 138.62±2.84 a 150 107.23±5.27 114.87±4.35 96.48±2.57 注:a: 与相同作用时间下H2O2浓度为10 µmol·L−1试验组比,P<0.05。
Note: a: during the same pretreatment time, indicated significant differences compared with the group of 10 µmol·L−1 H2O2, P<0.05. 表 2 VSMC胞内MDA生成量
Table 2. MDA concentration in VSMC
样品Samples 丙二醛MDA/(µmol·L−1) 对照组 Control 1.94±0.05 H2O2模型组
H2O2 Model Group3.21±0.09 a 0.1 mg·mL−1海带多糖+H2O2
0.1 mg·mL−1Laminaria japonica polysaccharide+H2O22.91±0.04 0.5 mg·mL−1海带多糖+H2O2
0.5mg·mL−1Laminaria japonica polysaccharide+H2O21.75±0.08 b 1.0 mg·mL−1 海带多糖+H2O2
1.0 mg·mL−1Laminaria japonica polysaccharide+H2O21.27±0.05 b 注:a:与对照组相比,P<0.01;b:与H2O2模型组相比,P< 0.01。
Note: a: indicated significant differences compared with the control group, P<0.01; b: indicated significant differences compared with the H2O2 model group, P<0.01. -
[1] CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y V. Vascular smooth muscle cell in atherosclerosis [J]. Acta Physiologica, 2015, 214(1): 33−50. doi: 10.1111/apha.12466 [2] ZERNECKE A. CD98 promotes vascular smooth muscle cell accumulation in atherosclerosis to confer plaque stability [J]. Atherosclerosis, 2017, 256: 128−130. doi: 10.1016/j.atherosclerosis.2016.11.028 [3] BOURMOUM M, CHARLES R, CLAING A. The GTPase ARF6 controls ROS production to mediate angiotensin Ⅱ-induced vascular smooth muscle cell proliferation [J]. PLoS One, 2016, 11(1): e0148097. doi: 10.1371/journal.pone.0148097 [4] YANG M M, FANG J, LIU Q G, et al. Role of ROS-TRPM7-ERK1/2 Axis in high concentration glucose-mediated proliferation and phenotype switching of rat aortic vascular smooth muscle cells [J]. Biochemical and Biophysical Research Communications, 2017, 494(3/4): 526−533. [5] LU Q B, WAN M Y, WANG P Y, et al. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade [J]. Redox Biology, 2018, 14: 656−668. doi: 10.1016/j.redox.2017.11.012 [6] ZHANG F, REN X, ZHAO M, et al. Angiotensin-(1–7) abrogates angiotensin Ⅱ-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways [J]. Scientific Reports, 2016, 6: 34621. doi: 10.1038/srep34621 [7] 陈浩然. 海带多糖LJP61A对动脉粥样硬化的调控机制研究 [J]. 安徽农业科学, 2018, 46(21):158−161, 171. doi: 10.3969/j.issn.0517-6611.2018.21.045CHEN H R. Study on the regulation mechanism of Laminarin LJP61A on atherosclerosis [J]. Journal of Anhui Agricultural Sciences, 2018, 46(21): 158−161, 171.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.21.045 [8] 彭臻菲, 方哲翔, 刘敏, 等. 海带多糖纯化及清除自由基活性研究 [J]. 食品工业科技, 2013, 34(15):80−83.PENG Z F, FANG Z X, LIU M, et al. Purification and radical scavenging effect of Laminaria japonica polysaccharide [J]. Science and Technology of Food Industry, 2013, 34(15): 80−83.(in Chinese) [9] 刘敏, 彭臻菲, 方哲翔, 等. 海带多糖硫酸酯对bFGF诱导的血管平滑肌细胞增殖的影响 [J]. 食品科学, 2013, 34(3):257−260.LIU M, PENG Z F, FANG Z X, et al. Effect of sulfated polysaccharides extracted from Laminaria japonica on proliferation of vascular smooth muscle cells induced by BFGF [J]. Food Science, 2013, 34(3): 257−260.(in Chinese) [10] MENSHIKOV M, PLEKHANOVA O, CAI H, et al. Urokinase plasminogen activator stimulates vascular smooth muscle cell proliferation via redox-dependent pathways [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(4): 801−807. doi: 10.1161/01.ATV.0000207277.27432.15 [11] SCHRÖDER K, HELMCKE I, PALFI K, et al. Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27(8): 1736−1743. doi: 10.1161/ATVBAHA.107.142117 [12] 郭晓纲, 陈君柱, 朱建华, 等. 过氧化氢对血管平滑肌细胞增殖和明胶酶A及其抑制因子基因表达的影响 [J]. 中国病理生理杂志, 2002, 18(12):1524−1528. doi: 10.3321/j.issn:1000-4718.2002.12.018GUO X G, CHEN J Z, ZHU J H, et al. Effects of hydrogen peroxide on cell proliferation and expression of gelatinase A and its inhibitor in vascular smooth muscle cells [J]. Chinese Journal of Pathophysiology, 2002, 18(12): 1524−1528.(in Chinese) doi: 10.3321/j.issn:1000-4718.2002.12.018 [13] DAS D K, ENGELMAN R M, KIMURA Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia [J]. Cardiovascular Research, 1993, 27(4): 578−584. doi: 10.1093/cvr/27.4.578 [14] DAS D K, ENGELMAN R M, ROUSOU J A, et al. Pathophysiology of superoxide radical as potential mediator of reperfusion injury in pig heart [J]. Basic Research in Cardiology, 1986, 81(2): 155−166. doi: 10.1007/BF01907380 [15] ROSS R. The pathogenesis of atherosclerosis: an update [J]. New England Journal of Medicine, 1986, 314(8): 488−500. doi: 10.1056/NEJM198602203140806 [16] PENTIKAINEN M O, OORNI K, ALA-KORPELA M, et al. Modified LDL - trigger of atherosclerosis and inflammation in the arterial In Tima [J]. Journal of Internal Medicine, 2000, 247(3): 359−370. doi: 10.1046/j.1365-2796.2000.00655.x [17] YOO A R, KOH S H, CHO G W, et al. Inhibitory effects of cilostazol on proliferation of vascular smooth muscle cells (VSMCs) through suppression of the ERK1/2 pathway [J]. Journal of Atherosclerosis and Thrombosis, 2010, 17(10): 1009−1018. doi: 10.5551/jat.4309 [18] ZHENG B, ZHENG C Y, ZHANG Y, et al. Regulatory crosstalk between KLF5, miR-29a and Fbw7/CDC4 cooperatively promotes atherosclerotic development [J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2018, 1864(2): 374−386. doi: 10.1016/j.bbadis.2017.10.021 [19] JIN Z G. SOXF: redox mediators of vascular smooth muscle cell growth [J]. Heart, 2004, 90(5): 488−490. doi: 10.1136/hrt.2003.029371 [20] 马军, 侯萍, 陈燕, 等. 几种海藻多糖抗氧化活性及体外抗脂质过氧化作用的研究 [J]. 南方水产科学, 2017, 13(6):97−104. doi: 10.3969/j.issn.2095-0780.2017.06.012MA J, HOU P, CHEN Y, et al. Study on antioxidant activity and anti-lipid peroxidation effect of several algal polysaccharides [J]. South China Fisheries Science, 2017, 13(6): 97−104.(in Chinese) doi: 10.3969/j.issn.2095-0780.2017.06.012 [21] 杨运高, 华何与, 张红栓, 等. 海藻多糖对大鼠红细胞免疫及自由基损伤的实验研究 [J]. 深圳中西医结合杂志, 2005, 15(1):21−23. doi: 10.3969/j.issn.1007-0893.2005.01.008YANG Y G, HUA H Y, ZHANG H S, et al. Experimental Study of Algal Amylose on Erythrocyte Immune and Free Electron Injury in Rats [J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 2005, 15(1): 21−23.(in Chinese) doi: 10.3969/j.issn.1007-0893.2005.01.008 [22] 蔡婉静, 刘少伟, 李苒, 等. 乙酰化降解海带多糖的抗氧化、吸湿/保湿性能探究 [J]. 食品工业科技, 2019, 40(10):109−114, 121.CAI W J, LIU S W, LI R, et al. Antioxidant and absorption/retention activities of the acetylated degraded Laminaria japonica polysaccharides [J]. Science and Technology of Food Industry, 2019, 40(10): 109−114, 121.(in Chinese) [23] 张晴岚, 张伟, 陈向凡. 海带多糖对实验性动脉粥样硬化大鼠血脂和NO及NOS的影响 [J]. 基因组学与应用生物学, 2018, 37(4):1761−1767.ZHANG Q L, ZHANG W, CHEN X F. Effect of Laminaria Polysaccharide on Blood Lipids, Nitric Oxide and Nitric Oxide Synthase in experimental Atherosclerosis Rats [J]. Genomics and Applied Biology, 2018, 37(4): 1761−1767.(in Chinese)