Effects of Potassium Fertilization on Sugar Metabolism and Related Enzymatic Activities in Ficus carica
-
摘要:
目的 通过研究不同施钾水平对无花果果实糖代谢的内在调控机制,为无花果合理施肥,提高无花果果实品质和产量提供理论依据。 方法 以2年生的‘波姬红’无花果为试材,在常规栽培管理前提下,增施4个水平的K2SO4,施钾量分别为:CK(0 g·株−1)、K1(125 g·株−1)、K2(250 g·株−1)、K3(375 g·株−1),进行对照试验。测定各个施钾水平下无花果果实的可溶性糖、淀粉含量及糖代谢相关酶活性等各项指标,并分析不同指标之间的相关性。 结果 (1)果糖与葡萄糖是无花果中主要的可溶性糖,其含量随着果实的发育逐渐上升。淀粉含量与可溶性糖含量的变化趋势相反,整体呈下降趋势;(2)与对照相比,增施钾肥能显著提高无花果果实中可溶性糖及各糖组分含量,降低果实发育中后期淀粉含量。施钾量在250 g·株−1(K2)时可溶性糖含量增幅最大,为最适用量;(3)适量施钾显著提高了无花果果实发育早期和末期AI和SS(分解方向)的活性,对NI影响较小,但极显著地提高了NI在果实发育成熟期的活性,促进了果实中果糖和葡萄糖含量的积累。适量施钾使α-淀粉酶和β-淀粉酶活性逐渐上升,且一直保持在较高水平,促进了淀粉向可溶性糖的转化。适量施钾提高了无花果发育各个时期的SPS活性,但对SS(合成方向)的影响较小,促进了蔗糖的积累。 结论 适量施钾可以提高糖代谢相关酶活性,促进果实中淀粉的分解和可溶性糖的积累。 Abstract:Objective To optimize the fertilization for improving fig quality and yield, the internal regulation mechanism of potassium (K) on sugar metabolism of the fruit was studied. Method Two-year-old Bojihong fig (Ficus carica) plants were cultivated under common practice, except that 4 levels of K2SO4 were applied on the soil for the experimentation. The K applications included CK at 0g.plant−1, K1 at 125 g.plant−1, K2 at 250 g.plant−1, and K3 at 375 g.plant−1. Contents of soluble sugars and starch as well as activities of enzymes related to the sugar metabolism of the fruits were determined for a correlation analysis. Result (1) Fructose and glucose were the main soluble sugars contained in the fruit with the contents increased as the fruit was developing. The combined starch and soluble sugars content decreased with fruit maturation, and the starch declined while the sugars on the rise. (2) With the K applications, both the contents and the compositions of the of soluble sugars in the figs significantly increased, while starch decreased during the mid and late stages of the fruit development. K2 produced the greatest soluble sugars increase among all treatments. (3) The K applications significantly rose the activities of AI and SS (in the starch degradation direction), but not on NI, in the early and late stages of the fruit development. However, they extremely significantly enhanced the NI activity as the fruits matured resulting in fructose and glucose accumulations in the figs. They also boosted, and maintained at high level, on the activities of α- and β-amylases facilitating the conversion of starch to sugars. In addition, the K applications promoted SPS activity in all developmental stages but exerted little effect on SS (in the synthesis direction) that encouraged the sucrose formation n the fruit. Conclusion The K applications increased activities of the enzymes related to sugar metabolism and promoted starch degradation that benefitted the accumulation of desirable soluble sugars in figs. -
Key words:
- Ficus carica /
- potassium /
- soluble sugars /
- sugar metabolism /
- enzyme activity
-
表 1 不同发育时期施钾水平与无花果果实糖代谢酶的相关性分析
Table 1. Correlation between sugar metabolic enzymes in figs and K applications at fruit development stages
项目
Item指标
Indices日期 Date (M/D) 5/23 6/8 6/23 7/8 7/23 施钾水平
K applicationAI 0.791** −0.039 0.073 0.583* 0.611* NI 0.095 0.504 0.325 0.253 0.954** SS分解方向 0.897** 0.788** −0.299 0.876** −0.1 SS合成方向 0.233 0.163 0.125 0.094 0.517 SPS 0.599* 0.581* 0.768** 0.815** 0.754** α-淀粉酶 0.738** 0.842** 0.622* 0.707* 0.641 β-淀粉酶 0.338 0.182 0.865** 0.825** 0.922** 注:*和**表示相关系数分别在0.05和0.01水平显著。表2同。
Note: * and * * indicate significant correlation coefficients at 0.05 and 0.01 levels, respectively. The same as Table 2.表 2 无花果果实中糖含量与糖代谢相关酶的相关性分析
Table 2. Correlation between sugar content and enzymes related to sugar metabolism in figs
项目
Items中性转化酶
NI酸性转化酶
AI蔗糖合酶分解方向
SS decomposition direction蔗糖合酶合成方向
SS synthesis direction蔗糖磷酸合成酶
SPSα-淀粉酶
α-amylaseβ-淀粉酶
β-amylaseCK 果糖 Fructose 0.92** 0.22 0.794** 0.588* 0.41 0.437 −0.07 葡萄糖 Glucose 0.909** 0.236 0.777** 0.589* 0.401 0.409 −0.09 蔗糖 Sucrose 0.141 −0.771** −0.146 −0.109 0.482 −0.296 0.391 淀粉 Starch −0.929** −0.162 −0.786** −0.604* −0.129 −0.33 0.438 K1 果糖 Fructose 0.913** 0.572* 0.647** 0.811** 0.681** 0.708** 0.566* 葡萄糖 Glucose 0.897** 0.527* 0.625* 0.813** 0.608* 0.634* 0.532* 蔗糖 Sucrose 0.701** 0.215 0.32 0.547** 0.148 0.138 0.241 淀粉 Starch −0.879** −0.482 −0.595* −0.82** −0.738** −0.803** −0.371 K2 果糖 Fructose 0.867** 0.821** 0.516* 0.732** 0.818** 0.897** 0.882** 葡萄糖 Glucose 0.852** 0.812** 0.528* 0.746** 0.797** 0.881** 0.823** 蔗糖 Sucrose 0.439 0.408 0.576* 0.153 −0.308 0.129 −0.026 淀粉 Starch −0.718** −0.732** −0.340 −0.456 −0.712** −0.925** −0.783** K3 果糖 Fructose 0.855** 0.535* −0.108 0.840** 0.705** 0.730** 0.754** 葡萄糖 Glucose 0.825** 0.456 −0.153 0.783** 0.703** 0.775** 0.782** 蔗糖 Sucrose 0.457 0.001 −0.054 0.386 −0.353 −0.081 −0.169 淀粉 Starch −0.842** −0.510 0.247 −0.715** −0.756** −0.750** −0.842** -
[1] BAROLO M I, RUIZ MOSTACERO N, LÓPEZ S N. Ficus carica L. (Moraceae): an ancient source of food and health [J]. Food Chemistry, 2014, 164: 119−127. doi: 10.1016/j.foodchem.2014.04.112 [2] JOSEPH B, RAJ S J. Pharmacognostic and phytochemical properties of Ficuscarica Linn -An overview [J]. International Journal of PharmTech Research, 2010, 3(1). [3] 孙锐, 贾眀, 杨莉, 等. 山东引种无花果氨基酸及矿物元素成分分析与评价 [J]. 食品工业科技, 2015, 36(19):352−356, 360.SUN R, JIA M, YANG L, et al. Amino acid and minerals element composition analysis and evaluation of figs in Shandong [J]. Science and Technology of Food Industry, 2015, 36(19): 352−356, 360.(in Chinese) [4] GROSS J. Carotenoids[M]//Pigments in Vegetables. Boston, MA: Springer US, 1991: 75-278. [5] 郭雯. 灌溉施钾对红富士苹果叶片光合特性和矿质营养及果实品质影响的研究[D]. 杨凌: 西北农林科技大学, 2009.GUO W, Effects of fertigation with potassium on photosynthetic characteristics, leaf nutrition and fruit quality of Red Fuji appleMalus pumilaMill[D]. Yangling: Northwest Agricultural and Forestry University of science and technology, 2009. [6] LESTER G E, JIFON J L, MAKUS D J. Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L) case study [J]. Plant and Soil, 2010, 335(1/2): 117−131. [7] 王小红. ‘蜂糖李’果实糖酸组分及其积累规律[D]. 贵阳: 贵州大学, 2018.WANG X H. The sugar-acid components of ’Fengtang plum’ fruit and the regularity of them accumulation[D]. Guiyang: Guizhou University, 2018. [8] 陈俊伟, 张上隆, 张良诚, 等. 温州蜜柑果实发育进程中光合产物运输分配及糖积累特性 [J]. 植物生理学报, 2001, 27(2):186−192. doi: 10.3321/j.issn:1671-3877.2001.02.016CHEN J W, ZHANG S L, ZHANG L C, et al. Characteristics of photosynthate translocation and partitioning and sugar accumulation in developing Satsuma mandarin (Citrus unshiu marc.) fruit [J]. Acta Photophysiologica Sinica, 2001, 27(2): 186−192.(in Chinese) doi: 10.3321/j.issn:1671-3877.2001.02.016 [9] 吴岚芳, 黄绵佳. 香蕉果实发育过程中糖代谢的研究 [J]. 安徽农业科学, 2008, 36(12):4862−4863. doi: 10.3969/j.issn.0517-6611.2008.12.030WU L F, HUANG M J. Study on the Sugar Metabolism in the Development Course of Banana Fruit [J]. Journal of Anhui Agricultural Sciences, 2008, 36(12): 4862−4863.(in Chinese) doi: 10.3969/j.issn.0517-6611.2008.12.030 [10] 魏长宾, 武红霞, 马蔚红, 等. 芒果成熟阶段蔗糖代谢及其相关酶类研究 [J]. 西南农业学报, 2008, 21(4):972−974. doi: 10.3969/j.issn.1001-4829.2008.04.019WEI C B, WU H X, MA W H, et al. Sucrose metabolism in Irwin Mango(Mangifera indica L.) during maturation [J]. Southwest China Journal of Agricultural Sciences, 2008, 21(4): 972−974.(in Chinese) doi: 10.3969/j.issn.1001-4829.2008.04.019 [11] 张弦. 不同施钾水平对“嘎拉”苹果果实糖、酸生理代谢的影响[D]. 杨凌: 西北农林科技大学, 2016.ZHANG X. Effects of different potassium level on sugar and acid metabolism in ’Gala’ apple fruit[D]. Yangling, China: Northwest A & F University, 2016. [12] 华明艳, 宋兰芳, 崔少杰, 等. 钾肥处理对草莓果实糖积累及相关酶活性的影响 [J]. 北方园艺, 2019(16):38−43.HUA M Y, SONG L F, CUI S J, et al. Effect of potassium fertilizer treatment on sugar accumulation and related enzyme activities in strawberry fruits [J]. Northern Horticulture, 2019(16): 38−43.(in Chinese) [13] 齐红岩, 李天来, 陈元宏, 等. 叶面喷施磷酸二氢钾与葡萄糖对番茄光合速率和蔗糖代谢的影响 [J]. 农业工程学报, 2005, 21(S2):137−142.QI H Y, LI T L, CHEN Y H, et al. Effects of foliage applications of KH2PO4 and glucose on photosynthesis and sucrose metabolism of tomato [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 137−142.(in Chinese) [14] 李春丽, 柴叶茂, 王志忠, 等. 草莓果实发育过程中糖、pH值及ABA水平变化趋势 [J]. 果树学报, 2011, 28(1):72−76, 189.LI C L, CHAI Y M, WANG Z Z, et al. Changing trends of sugar, pH and ABA during strawberry fruit development [J]. Journal of Fruit Science, 2011, 28(1): 72−76, 189.(in Chinese) [15] 王学奎. 植物生理生化实验原理和技术. 第2版[M]. 北京: 高等教育出版社, 2006. [16] 龚江美. 一个琯溪蜜柚新种质的选育与品质评价研究[D]. 福州: 福建农林大学, 2018.GONG J M. Identification and Quality Evaluation of a New Bud Mutant of Pummelo[D]. Fuzhou: Fujian Agricultural and Forestry University, 2018. [17] KELLER F, LUDLOW M M. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan) [J]. Journal of Experimental Botany, 1993, 44(8): 1351−1359. doi: 10.1093/jxb/44.8.1351 [18] ZHOU R, CHENG L, DANDEKAR A M. Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis [J]. Journal of Experimental Botany, 2006, 57(14): 3647−3657. doi: 10.1093/jxb/erl112 [19] 赵智中, 张上隆, 徐昌杰, 等. 蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用 [J]. 园艺学报, 2001(2):112−118. doi: 10.3321/j.issn:0513-353X.2001.02.004ZHAO Z Z, ZHANG S L, XU C J, etal. Roles of Sucrose- Metabolizing Enzymes in Accumulation of Sugars in Satsuma Mandarin Fruit [J]. ActaHorticulturae Sinica, 2001(2): 112−118.(in Chinese) doi: 10.3321/j.issn:0513-353X.2001.02.004 [20] BLEVINS D G. Role of Potassium in Protein Metabolism in Plants[J]. American Society of Agronomy,1985,413~424. [21] 邹铁祥, 戴廷波, 姜东, 等. 钾素水平对小麦氮素积累和运转及籽粒蛋白质形成的影响 [J]. 中国农业科学, 2006, 39(4):686−692. doi: 10.3321/j.issn:0578-1752.2006.04.006ZOU T X, DAI T B, JIANG D, et al. Potassium supply affected plant nitrogen accumulation and translocation and grain protein formation in winter wheat [J]. Scientia Agricultura Sinica, 2006, 39(4): 686−692.(in Chinese) doi: 10.3321/j.issn:0578-1752.2006.04.006 [22] RUIZ J M, ROMERO L. Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants [J]. Annals of Applied Biology, 2002, 140(3): 241−245. doi: 10.1111/j.1744-7348.2002.tb00177.x [23] 周敏. 刺葡萄矿质营养变化规律与钾对果实糖分积累的影响研究[D]. 长沙: 湖南农业大学, 2017.ZHOU M. Research on Nutrients Change Rule of VitisdavidiiFoёx. and Influence of Potassium to Fruit Sugar Accumulation[D]. Changsha: Hunan Agricultural University, 2017. [24] ERSOY N. Changes in Sugar Contents of Fig Fruit (Ficuscarica l. Cv. Bursa Siyahı) During Development[J]. Süleyman Demirel niversitesi Ziraat Fakültesi Dergisi, 2007, 2(2): 22-26. [25] WIND J, SMEEKENS S, HANSON J. Sucrose: Metabolite and signaling molecule [J]. Phytochemistry, 2010, 71(14/15): 1610−1614. [26] MORIGUCHI T, ABE K, SANADA T, et al. Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear [J]. Journal of the American Society for Horticultural Science, 1992, 117(2): 274−278. doi: 10.21273/JASHS.117.2.274 [27] BATTA S K, SINGH R. Sucrose metabolism in sugar cane grown under varying climatic conditions: Synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase [J]. Phytochemistry, 1986, 25(11): 2431−2437. doi: 10.1016/S0031-9422(00)84484-2 [28] MORIGUCHI T, SANADA T, YAMAKI S. Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit [J]. Journal of the American Society for Horticultural Science, 1990, 115(2): 278−281. doi: 10.21273/JASHS.115.2.278 [29] 马凤凰. 龙眼果实发育过程中糖代谢的研究[D]. 福州: 福建农林大学, 2009.MA F H. Study on sugar metabolism of Longan Fruit during its development[D]. Fuzhou: Fujian Agricultural and Forestry University, 2009. [30] 温志静. 叶面喷施不同浓度的氮、钾肥对‘嘎拉’苹果糖代谢的影响[D]. 杨凌: 西北农林科技大学, 2017.WEN Z J. Effects of foliar spraying different concentrations of nitrogen and potassium fertilizer on sugar metabolism in ‘gala’ apple[D]. Yangling, China: Northwest A & F University, 2017. [31] 王仁才, 夏利红, 熊兴耀, 等. 钾对猕猴桃果实品质与贮藏的影响 [J]. 果树学报, 2006, 23(2):200−204.WANG R C, XIA L H, XIONG X Y, et al. Effects of applying potassium on kiwifruit eating quality and storage life [J]. Journal of Fruit Science, 2006, 23(2): 200−204.(in Chinese) [32] 柳洪鹃, 史春余, 张立明, 等. 钾素对食用型甘薯糖代谢相关酶活性的影响 [J]. 植物营养与肥料学报, 2012, 18(3):724−732. doi: 10.11674/zwyf.2012.11253LIU H J, SHI C Y, ZHANG L M, et al. Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 724−732.(in Chinese) doi: 10.11674/zwyf.2012.11253 [33] KAACK K, PEDERSEN H L. Effects of potassium, phosphorus and nitrogen fertilization on endogenous ethylene and quality characteristics of apples (Malus DomesticaL.) [J]. Journal of Plant Nutrition, 2014, 37(7): 1148−1155. doi: 10.1080/01904167.2013.868484 [34] ROY CHOUDHURY S, ROY S, DAS R, et al. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter [J]. Planta, 2008, 229(1): 207−223. doi: 10.1007/s00425-008-0821-2