Genetic Diversity on Selected Agronomic Traits of Arabica Coffee Germplasm
-
摘要:
目的 分析小粒种咖啡种质资源农艺性状和品质性状的多样性,为小粒种咖啡品种选育提供科学依据。 方法 以60份小粒种咖啡种质资源为材料,进行8个农艺性状和5个品质性状测定,并采用相关性分析、主成分分析和聚类分析等方法进行多样性分析。 结果 在8个农艺性状中,变异系数以鲜干比最高(25.15%),其次为鲜果重(19.85%),以出米率最低(1.97%);遗传多样性指数以种子长为最高(2.04)。在5个品质性状中,变异系数以绿原酸最高(22.68%),其次为脂肪(12.40%),蛋白质为最低(5.20%);遗传多样性指数以绿原酸最高(2.07),其次为脂肪(2.06)和蛋白质(2.05)。性状相关性分析结果表明,干豆重与出米率呈显著正相关,种子大小与百粒重、出米率、蛋白质呈极显著正相关,百粒重与出米率、蛋白质、脂肪呈极显著正相关,出米率与蛋白质、脂肪呈极显著正相关,蛋白质与脂肪呈极显著正相关,咖啡因与蔗糖呈极显著负相关。主成分分析结果表明,前4个主成分因子(PC1、PC2、PC3、PC4)包含了12个农艺性状,累计贡献率达69.17%,表明这些性状是造成小粒种咖啡种质多样性的主要因素。聚类分析结果表明,60份小粒种咖啡种质可分为两个大类群,第I类群有53份资源,第II类群有7份资源。第II类群的鲜果重大,尤其是II-2类群的鲜果重和干豆重。 结论 60份咖啡种质资源存在丰富的遗传多样性,可通过引种驯化、杂交、嫁接和分子育种等技术将其优异基因延续下去。第II-2 类种质的鲜果重和干豆重大,可作为选育和改良品种的基本材料。 Abstract:Objective Diversity on the agronomic traits relating to breeding purpose of arabica coffee germplasms in collection was studied. Method From 60 arabica coffee germplasms, 8 agronomic and 5 quality traits were targeted and subjected them to the correlation, principal component, and cluster analyses for the genetic diversity study. Result Among the 8 agronomic traits, the fresh/dry ratio had the highest coefficient of variation of 25.15% followed by fresh fruit weight of 19.85%, while green bean rate of 1.97% being the lowest. Seed length ranked the highest on the genetic diversity indices. On the 5 quality traits, the chlorogenic acid content showed the highest coefficient of variation of 22.68% followed by fat of 12.40%, and protein of 5.20% being the lowest of all. Chlorogenic acid also had the greatest genetic diversity index of 2.07 followed by fat of 2.06 and protein of 2.05. The dry bean weight of the germplasms significantly correlated with their green bean rate; the seed size with 100-seed weight, green bean rate and protein; the 100-seed weight with green bean rate, protein and fat; and, the green bean rate with protein and fat. The contents of protein and fat showed an extremely significant correlation; whereas, those of caffeine and sucrose an extremely significant inverse correlation. The principal component analysis indicated the top 4 main components (i.e., PC1-PC4) included the 12 agronomic traits and had a combined contribution of 69.17% of the total constituting the major factors that affected the diversity. A cluster analysis classified the 60 germplasms into two groups, 53 in Group I and 7 in Group II. Group II was high on the fresh fruit weight, especially, Subgroup II-2, which exhibited high fresh and dry bean weights. Conclusion The arabica coffee germplasms under study were rich in diversity. The desirable genes could be preserved by domestication, hybridization, grafting and/or molecular breeding. Subgroup II-2, being high on fresh and dry bean weights, could conceivably be used as a parent for new variety breeding. -
表 1 供试咖啡种质资源
Table 1. Coffee germplasms used in this study
编号
No.种质代码
Germplasm code品种类型
Varietal type编号
No.种质代码
Germplasm code品种类型
Varietal type1 5 波邦 Bourbon 31 143 未知 Unknown 2 10 卡杜艾 Catuai 32 145 未知 Unknown 3 35 卡蒂姆 Catimor 33 147 卡蒂姆 Catimor 4 36 卡蒂姆 Catimor 34 148 卡蒂姆 Catimor 5 37 卡蒂姆 Catimor 35 149 卡蒂姆 Catimor 6 40 未知 Unknown 36 150 卡蒂姆 Catimor 7 41 波邦 Bourbon 37 151 未知 Unknown 8 42 卡蒂姆 Catimor 38 154 未知 Unknown 9 45 卡杜拉 Caturra 39 159 未知 Unknown 10 49 卡蒂姆 Catimor 40 162 卡蒂姆 Catimor 11 50 卡蒂姆 Catimor 41 163 卡蒂姆 Catimor 12 51 波邦 Bourbon 42 166 卡蒂姆 Catimor 13 55 未知 Unknown 43 169 卡蒂姆 Catimor 14 61 未知 Unknown 44 170 卡蒂姆 Catimor 15 78 卡蒂姆 Catimor 45 173 卡蒂姆 Catimor 16 86 波邦 Bourbon 46 174 卡蒂姆 Catimor 17 87 铁皮卡 Typica 47 175 卡蒂姆 Catimor 18 88 波邦 Bourbon 48 178 卡蒂姆 Catimor 19 91 卡杜艾 Catuai 49 180 卡蒂姆 Catimor 20 92 卡杜艾 Catuai 50 182 未知 Unknown 21 93 未知 Unknown 51 204 未知 Unknown 22 118 卡杜拉 Caturra 52 282 未知 Unknown 23 119 未知 Unknown 53 284 未知 Unknown 24 120 未知 Unknown 54 296 未知 Unknown 25 122 卡蒂姆 Catimor 55 390 萨其姆 Sachimor 26 129 未知 Unknown 56 391 萨其姆 Sachimor 27 132 未知 Unknown 57 393 萨其姆 Sachimorr 28 138 未知 Unknown 58 394 萨其姆 Sachimor 29 139 未知 Unknown 59 395 萨其姆 Sachimor 30 140 卡杜拉 Caturra 60 435 未知 Unknown 表 2 农艺性状变异系数及遗传多样性分析结果
Table 2. Coefficient of variation and genetic diversity on agronomic traits of coffee germplasms
性状
Characteristics平均值
Average最小值
Min.最大值
Max.标准差
S变异系数
CV/%遗传多样性指数
H′鲜果重 Fresh weight/kg 1.87 0.79 2.97 0.37 19.85 1.88 干豆重 Dry weight/g 390.58 300.49 592.68 71.19 18.23 1.91 鲜干比 Fresh/dry ratio/% 21.50 16.55 48.79 0.11 25.15 1.43 种子长 Seed length/mm 11.74 10.74 12.69 0.44 3.71 2.04 种子宽 Seed width/mm 7.98 7.36 9.05 0.32 4.07 1.92 种子厚 Seed thickness/mm 4.88 4.40 5.70 0.26 5.38 1.99 百粒重100-seed weight/g 19.51 15.06 27.13 19.51 10.81 1.88 出米率 Green bean rate/% 84.01 78.63 86.80 1.65 1.97 1.92 表 3 品质性状变异系数及遗传多样性分析结果
Table 3. Coefficient of variation and genetic diversity on quality traits of coffee germplasms
性状
Characteristics平均值
Average最小值
Min.最大值
Max.标准差
S变异系数
CV/%遗传多样性指数
H′蛋白质 Protein/% 13.40 11.98 15.43 3.45 5.20 2.05 脂肪 Fat/% 13.02 9.03 15.91 6.88 12.40 2.06 绿原酸 Chlorogenic acid/(mg·g−1) 16.59 8.10 24.56 16.46 22.68 2.07 咖啡因 Caffeine/(mg·g−1) 9.89 7.62 11.80 4.18 9.84 1.99 蔗糖 Sucrose/(g·hg−1) 8.48 7.10 10.00 2.9 9.42 0.55 表 4 农艺性状、品质性状相关性分析
Table 4. Correlation between agronomic and quality traits of coffee germplasms
变量
Variable鲜果重
Fresh weight干豆重
Dry weight鲜干比
Fresh/dry ratio种子长
Seed length种子宽
Seed width种子厚
Seed thickness百粒重
100-seed weight出米率
Green bean rate蛋白质
Protein脂肪
Fat绿原酸
Chlorogenic acid咖啡因
Caffeine蔗糖
Sucrose鲜果重
Fresh weight1 干豆重
Dry weight0.057 1 鲜干比
Fresh/dry ratio0.053 0.714** 1 种子长
Seed length0.012 0.755** 0.965** 1 种子宽
Seed width0.217 0.125 −0.025 −0.104 1 种子厚
Seed thickness0.045 0.186 −0.057 −0.033 0.061 1 百粒重
100-seed weight0.205 0.164 0.363 0.368** 0.047 0.418** 1 出米率
Green bean rate0.021 0.308* 0.491 0.435** 0.185 0.374** 0.742** 1 蛋白质
Protein0.07 0.382** 0.526 0.477** 0.168 0.468** 0.757** 0.803** 1 脂肪
Fat0.012 0.141 0.183 0.177 −0.026 0.276* 0.467** 0.477** 0.499** 1 绿原酸
Chlorogenic acid−0.706** −0.009 −0.093 −0.115 0.398 0.114 −0.087 −0.01 0.072 0.097 1 咖啡因
Caffeine0.017 −0.051 −0.18 −0.187 0.115 −0.08 −0.109 −0.305 −0.133 −0.188 0.028 1 蔗糖
Sucrose−0.048 0.167 0.178 0.271* −0.316 0.099 0.003 0.063 0.112 0.066 −0.175 −0.426** 1 注:* 表示在 0.05 水平上显著相关;**表示在 0.01 水平上显著相关。
Note:* and ** represented significant correlation (P<0.05) and extremely significant correlation (P<0.01) respecively.表 5 农艺性状、品质性状主成分分析
Table 5. Principal components of agronomic and quality traits of coffee germplasms
变量
Variable主成分
Principal componentPC1 PC2 PC3 PC4 鲜果重 Fresh weight −0.359 0.801 −0.078 −0.313 干豆重 Dry weight −0.150 0.669 −0.471 0.365 鲜干比 Fresh / dry ratio 0.173 −0.300 −0.326 0.837 种子长 Seed length 0.653 0.090 0.205 −0.209 种子宽 Seed width 0.751 0.439 0.184 0.028 种子厚 Seed thickness 0.904 0.019 0.070 0.031 百粒重100-seed weight 0.919 0.164 0.146 0.007 出米率 Green bean rate 0.697 0.163 0.053 0.221 蛋白质 Protein −0.196 −0.089 0.768 0.204 脂肪 Fat −0.330 0.558 −0.060 0.012 绿原酸 Chlorogenic acid −0.106 0.527 0.280 0.502 咖啡因 Caffeine −0.398 0.230 0.648 0.103 蔗糖 Sucrose 0.476 0.174 −0.274 −0.287 特征值 Eigen value 3.86 2.11 1.61 1.41 贡献率 Contribution rate/% 29.71 16.25 12.35 10.86 累计贡献率
Cumulative contribution rate/%29.71 45.96 58.31 69.17 -
[1] FAO Statistics[EB/OL]. (2019-01-18)[2019-08-12]. http://faostat.fao.org. [2] VAN DER VOSSEN H, BERTRAND B, CHARRIER A. Next generation variety development for sustainable production of Arabica coffee (Coffea arabica L.): a review [J]. Euphytica, 2015, 204(2): 243−256. doi: 10.1007/s10681-015-1398-z [3] 赵青云, 普浩杰, 王秋晶, 等.咖啡果皮不同堆沤处理养分含量及对咖啡植株生长的影响[J/OL]. 热带作物学报, 2019:1-8[2019-09-21]. http://kns.cnki.net/kcms/detail/46.1019.s.20190920.1323.006.html.ZHAO Q Y, PU H J, WANG Q J, et al.Nutrient contents of coffee peel with different composting treatments and its effects on coffee plant growth[J/OL]. Chinese Journal of Tropical Crops, 2019:1-8[2019-09-21].http://kns.cnki.net/kcms/detail/46.1019.s.20190920.1323.006.html. (in Chinese) [4] 周华, 张洪波, 夏红云, 等. 咖啡种质资源多样性研究 [J]. 中国热带农业, 2015(5):23−27. doi: 10.3969/j.issn.1673-0658.2015.05.007ZHOU H, ZHANG H B, XIA H Y, et al. Genetic diversity analysis of coffee germlasms [J]. China Tropical Agriculture, 2015(5): 23−27.(in Chinese) doi: 10.3969/j.issn.1673-0658.2015.05.007 [5] 白学慧, 夏红云, 李锦红, 等. 咖啡种质资源抗锈性初步鉴定 [J]. 热带农业科学, 2014, 34(7):60−64. doi: 10.3969/j.issn.1009-2196.2014.07.012BAI X H, XIA H Y, LI J H, et al. Resistance identification of coffee germplasm resources to rust [J]. Chinese Journal of Tropical Agriculture, 2014, 34(7): 60−64.(in Chinese) doi: 10.3969/j.issn.1009-2196.2014.07.012 [6] YAN L, OGUTU C, HUANG L F, et al. Genetic diversity and population structure of coffee germplasm collections in China revealed by ISSR markers [J]. Plant Molecular Biology Reporter, 2019, 37(3): 204−213. doi: 10.1007/s11105-019-01148-3 [7] 闫林, 黄丽芳, 王晓阳, 等. 咖啡种质资源遗传多样性的ISSR分析 [J]. 南方农业学报, 2019, 50(3):491−499.YAN L, HUANG L F, WANG X Y, et al. Genetic diversity of coffee gemeplasms by ISSR analysis [J]. Journal of Southern Agriculture, 2019, 50(3): 491−499.(in Chinese) [8] 闫林, 黄丽芳, 王晓阳, 等. 基于ISSR标记的咖啡资源遗传多样性分析 [J]. 热带作物学报, 2019, 40(2):300−307.YAN L, HUANG L F, WANG X Y, et al. Genetic diversity of coffee germplasms by ISSR markers [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 300−307.(in Chinese) [9] 黄丽芳, 董云萍, 王晓阳, 等. 利用RAPD标记分析咖啡种质资源的遗传多样性 [J]. 热带作物学报, 2014, 35(12):2313−2319. doi: 10.3969/j.issn.1000-2561.2014.12.001HUANG L F, DONG Y P, WANG X Y, et al. Genetic diversity analysis of coffee germplasms by RAPD markers [J]. Chinese Journal of Tropical Crops, 2014, 35(12): 2313−2319.(in Chinese) doi: 10.3969/j.issn.1000-2561.2014.12.001 [10] 黄丽芳, 董云萍, 王晓阳, 等. 云南咖啡资源遗传多样性的RAPD分析 [J]. 中国热带农业, 2017(5):48−52. doi: 10.3969/j.issn.1673-0658.2017.05.012HUANG L F, DONG Y P, WANG X Y, et al. Genetic diversity analysis of coffee germlasms from Yunnan by RAPD Markers [J]. China Tropical Agriculture, 2017(5): 48−52.(in Chinese) doi: 10.3969/j.issn.1673-0658.2017.05.012 [11] 陶爱芬, 祁建民, 林培青, 等. 红麻优异种质产量和品质性状主成分聚类分析与综合评价 [J]. 中国农业科学, 2008, 41(9):2859−2867. doi: 10.3864/j.issn.0578-1752.2008.09.039TAO A F, QI J M, LIN P Q, et al. Cluster analysis and evaluation of elite kanaf germplasm based on principal components [J]. Scientia Agricultura Sinica, 2008, 41(9): 2859−2867.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.09.039 [12] 廖丽, 陈玉华, 赵亚荣, 等. 地毯草种质资源形态多样性 [J]. 草业科学, 2015, 32(2):248−257. doi: 10.11829/j.issn.1001-0629.2014-0223LIAO L, CHEN Y H, ZHAO Y R, et al. Morphology diversity of Axonopus compressus germplasm [J]. Pratacultural Science, 2015, 32(2): 248−257.(in Chinese) doi: 10.11829/j.issn.1001-0629.2014-0223 [13] 魏忠芬, 李慧琳, 奉斌, 等. 贵州紫苏种质资源表型性状的遗传多样性 [J]. 西南农业学报, 2017, 30(1):45−52.WEI Z F, LI H L, FENG B, et al. Genetic Diversity of Phenotype Characters of Perilla frutescens Germplasm Resources in Guizhou [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(1): 45−52.(in Chinese) [14] 万述伟, 宋风景, 郝俊杰, 等. 271份豌豆种质资源农艺性状遗传多样性分析 [J]. 植物遗传资源学报, 2017, 18(1):10−18.WANG S W, SONG F J, HAO J J, et al. Genetic Diversity of Agronomic Traits in 271 Pea Germplasm Resources [J]. Journal of Plant Genetic Resources, 2017, 18(1): 10−18.(in Chinese) [15] 代攀虹, 孙君灵, 何守朴, 等. 陆地棉核心种质表型性状遗传多样性分析及综合评价 [J]. 中国农业科学, 2016, 49(19):3694−3708. doi: 10.3864/j.issn.0578-1752.2016.19.003DAI P H, SUN J L, HE S P, et al. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton [J]. Scientia Agricultura Sinica, 2016, 49(19): 3694−3708.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.19.003 [16] KISUA J, MWIKAMBA K, MAKOBE M, et al. Genetic diversity of sweet and grain sorghum populations using phenotypic markers [J]. International Journal of Biosciences, 2015, 6(9): 34−46. doi: 10.12692/ijb/6.9.34-46 [17] 王黎明, 焦少杰, 姜艳喜, 等. 不同来源甜高粱种质资源的表型遗传多样性分析 [J]. 植物遗传资源学报, 2014, 15(2):411−416.WANG L M, JIAO S J, JIANG Y X, et al. Genetic diversity analysis on sweet Sorghum germplasm resources of different origins based on agronomical traits Genetic diversity analysis of sweet Sorghum germplasm resources from different origins using agronomical traits Genetic diversity analysis of sweet Sorghum germplasm resources from different origins using agronomical traits [J]. Journal of Plant Genetic Resources, 2014, 15(2): 411−416.(in Chinese) [18] 黄家雄, 吕玉兰, 程金焕, 等. 不同海拔对小粒种咖啡品质影响的研究 [J]. 热带农业科学, 2012, 32(8):4−7. doi: 10.3969/j.issn.1009-2196.2012.08.002HUANG J X, LV Y L, CHENG J H, et al. Preliminary study on the influence of different altitudes on the quality of coffee Arabica [J]. Chinese Journal of Tropical Agriculture, 2012, 32(8): 4−7.(in Chinese) doi: 10.3969/j.issn.1009-2196.2012.08.002 [19] 王光路, 李长文, 刘志达, 等. HPLC法同时测定绿咖啡豆中绿原酸及咖啡碱含量 [J]. 食品研究与开发, 2017, 38(23):155−159. doi: 10.3969/j.issn.1005-6521.2017.23.030WANG G L, LI C W, LIU Z D, et al. Simultaneous quantitative analysis of chlorogenic acid and caffeine in raw coffee beans by HPLC [J]. Food Research and Development, 2017, 38(23): 155−159.(in Chinese) doi: 10.3969/j.issn.1005-6521.2017.23.030 [20] 高贤玉, 张发明, 柏天琦, 等. 莲雾果实糖酸含量分析 [J]. 热带农业科学, 2019, 39(3):75−79, 90.GAO X Y, ZHANG F M, BAI T Q, et al. Sugar and Organic Acid Contents in the Fruit of Wax Apple [J]. Chinese Journal of tropical agriculture, 2019, 39(3): 75−79, 90.(in Chinese) [21] 谢向誉, 陆柳英, 曾文丹, 等. 31份木薯种质资源的鉴定评价及遗传多样性分析 [J]. 南方农业学报, 2017, 48(3):393−400.XIE X Y, LU L Y, ZENG W D, et al. Identification, evaluation and genetic diversity analysis of 31 cassava germplasm resources [J]. Journal of Southern Agriculture, 2017, 48(3): 393−400.(in Chinese) [22] 朱慧珺, 张耀文, 赵雪英, 等. 山西省绿豆种质资源的遗传多样性分析 [J]. 山西农业科学, 2019, 47(9):1540−1543, 1602. doi: 10.3969/j.issn.1002-2481.2019.09.11ZHU H J, ZHANG Y W, ZHAO X Y, et al. Genetic diversity analysis of mung bean germplasm resources in Shanxi Province [J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1540−1543, 1602.(in Chinese) doi: 10.3969/j.issn.1002-2481.2019.09.11 [23] 马克平. 试论生物多样性的概念 [J]. 生物多样性, 1993, 1(1):20−22. doi: 10.3321/j.issn:1005-0094.1993.01.006MA K P. The concept of biological diversity [J]. Chinese Biodiversity, 1993, 1(1): 20−22.(in Chinese) doi: 10.3321/j.issn:1005-0094.1993.01.006 [24] 时圣明, 潘明佳, 王洁, 等. 分子鉴定技术在中药中的应用 [J]. 中草药, 2016, 47(17):3121−3126. doi: 10.7501/j.issn.0253-2670.2016.17.027SHI S M, PAN M J, WANG J, et al. Application of molecular identification techniques in Chinese materia Medica [J]. Chinese Traditional and Herbal Drugs, 2016, 47(17): 3121−3126.(in Chinese) doi: 10.7501/j.issn.0253-2670.2016.17.027 [25] 刘同金, 张晓辉, 沈镝, 等. 欧洲山芥种质资源的表型遗传多样性分析 [J]. 植物遗传资源学报, 2015, 16(3):528−534.LIU T J, ZHANG X H, SHEN D, et al. Analysis on genetic diversity of Barbarea vulgaris germplasm resources based on phenotypic traits [J]. Journal of Plant Genetic Resources, 2015, 16(3): 528−534.(in Chinese) [26] 聂石辉, 彭琳, 王仙, 等. 鹰嘴豆种质资源农艺性状遗传多样性分析 [J]. 植物遗传资源学报, 2015, 16(1):64−70.NIE S H, PENG L, WANG X, et al. Genetic diversity of agronomic traits in chickpea(Cicer arietinum L.) germplasm resources [J]. Journal of Plant Genetic Resources, 2015, 16(1): 64−70.(in Chinese) [27] 王晓阳, 黄丽芳, 闫林, 等. 基于SSR标记的我国咖啡种质资源遗传多样性分析及指纹图谱构建 [J]. 热带农业科学, 2018, 38(12):30−36, 42.WANG X Y, HUANG L F, YAN L, et al. Genetic diversity analysis and fingerprinting of coffee germplasm in China by SSR markers [J]. Chinese Journal of Tropical Agriculture, 2018, 38(12): 30−36, 42.(in Chinese) [28] 曾潮武, 梁晓东, 李建疆. 新疆春小麦种质资源主要农艺性状的遗传多样性分析 [J]. 分子植物育种, 2017, 15(9):3740−3750.ZENG C W, LIANG X D, LI J J. Genetic diversity analysis in main characters of spring wheat germplasm in Xinjiang [J]. Molecular Plant Breeding, 2017, 15(9): 3740−3750.(in Chinese) [29] 潘存祥, 许勇, 纪海波, 等. 西瓜种质资源表型多样性及聚类分析 [J]. 植物遗传资源学报, 2015, 16(1):59−63.PAN C X, XU Y, JI H B, et al. Phenotypic diversity and clustering analysis of watermelon germplasm [J]. Journal of Plant Genetic Resources, 2015, 16(1): 59−63.(in Chinese)