A Preliminary Study on Single Imprinted QTL Mapping Based on Random Mating of Natural Populations
-
摘要:
目的 探索基于自然群体随机交配的单个印迹QTL的定位方法,分析影响定位准确性的关键因素。 方法 若印迹QTL决定的某一性状为数量性状,假设该性状与标记之间的关系存在线性关系,可以采用最小二乘法进行印迹QTL定位和遗传参数的估计。利用计算机模拟单点模拟标记、水稻真实自然群体标记进行印迹QTL定位,比较在不同最小等位基因频率(Minor allele frequency, MAF)、不同遗传率、不同随机交配轮数下的统计功效与参数估计精度,印迹QTL的显著性采用F检验和t检验。 结果 通过模拟研究,证明该试验设计对于检测单个印迹QTL是有效的,在MAF大于5%时,印迹遗传率大于10%时,定位与遗传参数估计趋于无偏。 结论 采用自然群体随机交配产生作图群体,可以用来进行单个印迹QTL的定位,定位的结果较好,是一种有效的试验设计,为下一步进行多个印迹QTL奠定了基础。 Abstract:Objective To explore the application of single imprinted QTL mapping based on random mating of natural populations and analyze key factors affecting the mapping accuracy. Method Assuming the trait determined by the imprinted QTL to be quantitative and a linear relationship between the trait and the markers existed, then the least squares method could be used to estimate the QTL mapping and genetic parameters. The imprinted QTL mapping was generated by computer simulating the single-point markers as well as a real data set of natural population markers. The statistical power and parameter estimation accuracy of different genotype frequencies, heritability rates, and random mating rounds were compared. The significance of imprinted QTLs was determined by using F- and t-tests. Result Through a simulation study, it was proven that the experimental design was effective in detecting a single imprinted QTL. When the MAF was greater than 5% and the imprinted heritability greater than 10%, the iQTLs positions and genetic parameters were presumably unbiased Conclusion Using random mating in the nature to generate mapping populations could conceivably be used to locate single-imprinted QTLs with acceptable results of localization. It seemed to be an effective design for the next step for QTL mapping. -
Key words:
- Natural population /
- association analysis /
- F-test /
- imprinted QTL /
- random mating
-
表 1 自然群体中基因型的频率与哑变量取值
Table 1. Frequency of genotypes and value of dummy variables in natural populations
基因型 Genotype 频率 Frequency x z t a d h A/A p2 1 0 0 A/a pq 0 1 1 a/A pq 0 1 −1 A/A q2 −1 0 0 表 2 印迹类型与参数设置与缩写
Table 2. Imprint types, parameter settings, and abbreviations
印迹类型
Imprinting type简写
abbreviation参数
parameter来源于父本的表达
Parental expression, PaternalPEP d=0且a=h 来源于母本的表达
Parental expression, MaternalPEM d=0且a=−h 显性印迹(双相)
Dominance imprinting, BipolarDIB a=0且d=0 显性印迹(单相)超显性
Dominance imprinting, Polar, Over-dominanceDIPOD a=0且d=h 显性印迹(单相)低于显性
Dominance imprinting, Polar, Under dominanceDIPUD a=0且d=−h 表 3 单点模拟5种类型的iQTL定位结果
Table 3. Single-point simulation of 5 types of iQTL mapping results
MAF/% H/% DIPOD DIPUD DIB PEM PEP a d h P/% a d h P/% a d h P/% a d h P/% a d h P/% RV 0 2.35 2.35 0 2.35 −2.35 0 0 2.35 2.35 0 −2.35 2.35 0 2.35 5 5 0.18 2.2 2.4 85 0.07 2.25 −2.4 93 0.12 −0.1 2.35 88 2.41 −0.06 −2.35 91 2.16 0.24 2.35 87 (1.17) (1.22) (0.31) (1.22) (1.23) (0.33) (1.19) (1.24) (0.37) (1.16) (1.22) (0.31) (1.04) (1.13) (0.29) RV 0 3.42 3.42 0 3.42 −3.42 0 0 3.42 3.42 0 −3.42 3.42 0 3.42 5 10 0.09 3.31 3.45 83 0 3.47 −3.38 82 −0.02 −0.02 3.43 86 3.46 0.03 −3.45 92 3.37 0.1 3.38 86 (1.19) (1.21) (0.35) (1.01) (1.06) (0.31) (1.19) (1.25) (0.35) (1.34) (1.35) (0.35) (1.03) (1.05) (0.29) RV 0 4.31 4.31 0 4.31 −4.31 0 0 4.31 4.31 0 −4.31 4.31 0 4.31 5 15 0.07 4.28 4.34 90 −0.01 4.31 −4.35 90 0.03 −0.05 4.25 90 4.36 −0.05 −4.31 88 4.42 −0.08 4.33 85 (1.2) (1.25) (0.27) (1.18) (1.26) (0.29) (1.24) (1.24) (0.33) (1.03) (1.03) (0.3) (1.03) (1.08) (0.32) RV 0 1.71 1.71 0 1.71 −1.71 0 0 1.71 1.71 0 −1.71 1.71 0 1.71 10 5 −0.02 1.75 1.72 100 −0.04 1.75 −1.73 100 −0.04 0.06 1.72 100 1.64 0.06 −1.67 100 1.69 −0.02 1.69 100 (0.53) (0.6) (0.21) (0.53) (0.55) (0.21) (0.57) (0.63) (0.23) (0.47) (0.58) (0.24) (0.57) (0.63) (0.22) RV 0 2.48 2.48 0 2.48 −2.48 0 0 2.48 2.48 0 −2.48 2.48 0 2.48 10 10 −0.05 2.52 2.5 100 −0.05 2.53 −2.51 100 −0.02 0.03 2.51 100 2.54 −0.04 −2.51 100 2.59 −0.06 2.52 100 (0.55) (0.61) (0.23) (0.57) (0.63) (0.25) (0.61) (0.7) (0.26) (0.51) (0.56) (0.2) (0.6) (0.62) (0.23) RV 0 3.13 3.13 0 3.13 −3.13 0 0 3.13 3.13 0 −3.13 3.13 0 3.13 10 15 −0.04 3.18 3.12 100 −0.08 3.22 −3.13 100 −0.08 0.06 3.13 100 3.24 −0.05 −3.12 100 3.18 0.01 3.12 100 (0.49) (0.57) (0.23) (0.52) (0.57) (0.23) (0.62) (0.65) (0.26) (0.47) (0.53) (0.22) (0.55) (0.59) (0.24) 注:表中括号内为标准差,此处列出的为C=10,交配轮数为20的结果,表中H代表遗传率(Heritability),RV代表真值(Real value),P代表统计功效(Power)
Note: The number in parentheses in the table is the standard deviation,C=10 and cross rounds is 20, H represents heritability, RV means real value and p means statistical power.表 4 不同C值下5种印迹类型的iQTL定位结果
Table 4. iQTL mapping results of 5 imprint types under varied C values
H C DIPOD DIPUD DIB PEM PEP POS/kbp a d h POS/kbp a d h POS/kbp a d h POS/Kbp a d h POS/kbp a d h P/% RV 470 0 0.73 0.73 470 0 0.73 −0.73 470 0 0 0.73 470 0.73 0 −0.73 470 0.73 0 0.73 10 2 470 −0.01 0.74 0.73 470 0.01 0.74 −0.72 470 0 0 0.74 470 0.73 0 −0.73 470 −0.01 0.74 0.73 100 0 (0.1) (0.13) (0.07) 0 (0.09) (0.13) (0.07) 0 (0.1) (0.14) (0.08) 0 (0.1) (0.12) (0.08) 0 (0.1) (0.1) (0.1) RV 470 0 1.26 1.26 470 0 1.26 −1.26 470 0 0 1.26 470 1.26 0 −1.26 470 1.26 0 1.26 10 6 470 0.02 1.25 1.28 470 −0.04 1.25 −1.28 470.02 0.01 0.01 1.26 470 1.27 0 −1.25 470 0.02 1.25 1.28 100 0 (0.18) (0.23) (0.11) 0 (0.16) (0.18) (0.13) (0.2) (0.16) (0.22) (0.15) 0 (0.17) (0.21) (0.12) 0 (0.18) (0.2) (0.1) RV 470 0 0.93 0.93 470 0 0.93 −0.93 470 0 0 0.93 470 0.93 0 −0.93 470 0.93 0 0.93 15 2 470 −0.01 0.92 0.93 470 0 0.9 −0.93 470 −0.01 0 0.92 470 0.95 0 −0.92 470 −0.01 0.92 0.93 100 0 (0.1) (0.12) (0.07) 0 (0.1) (0.13) (0.07) 0 (0.11) (0.13) (0.09) 0 (0.1) (0.14) (0.07) 0 (0.1) (0.1) (0.1) RV 470 0 1.6 1.6 470 0 1.6 −1.6 470 0 0 1.6 470 1.6 0 −1.6 470 1.3 0 1.6 15 6 470 0 1.59 1.59 470 0 1.62 −1.63 470 0.01 0.01 1.6 470 1.59 −0.03 −1.62 470 0 1.59 1.59 100 0 (0.17) (0.2) (0.13) 0 (0.18) (0.22) (0.13) 0 (0.16) (0.19) (0.12) 0 (0.17) (0.2) (0.12) 0 (0.17) (0.2) (0.1) 注:表中括号内为标准差,此处列出C=2、6,交配轮数为7次的结果,表中H代表遗传率,H代表遗传率(Heritability),C代表C值(C value),RV代表真值(Real value),P代表统计功效(Power),POS代表iQTL在染色体上的位置(iQTL position)。
Note: The number in parentheses in the table is the standard deviation,the results listed here are the C values are 2 and 4,the number of mating rounds is 7, C represents C-value, RV represents real value, P represents statistical power and POS means the iQTL’s position on chromosome. -
[1] 凃欣, 石立松, 汪樊, 等. 全基因组关联分析的进展与反思 [J]. 生理科学进展, 2010, 41(2):87−94.TU X, SHI LS, WANG F, WANG Q. Genomewide Association Study: Advances, Challenges and Deliberation [J]. Progress in Physiological Sciences, 2010, 41(2): 87−94.(in Chinese) [2] LI F M, XIE J Y, ZHU X Y, et al. Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice(Oryza sativa L.) [J]. Frontiers in Plant Science, 2018, 9: 650. doi: 10.3389/fpls.2018.00650 [3] WANG H R, XU X, VIEIRA F G, et al. The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication [J]. Molecular Plant, 2016, 9(7): 975−985. doi: 10.1016/j.molp.2016.04.018 [4] 田润苗, 张雪海, 汤继华, 等. 玉米种子萌发相关性状的全基因组关联分析 [J]. 作物学报, 2018, 44(5):672−685. doi: 10.3724/SP.J.1006.2018.00672TIAN R M, ZHANG X H, TANG J H, et al. Genome-wide association studies of seed germination related traits in maize [J]. Acta Agronomica Sinica, 2018, 44(5): 672−685.(in Chinese) doi: 10.3724/SP.J.1006.2018.00672 [5] 邵晓宇, 宋希云, 潘顺祥, 等. 玉米穗粗性状的全基因组关联分析及QTL元分析 [J]. 植物生理学报, 2017, 53(12):2091−2102.SHAO XY, SONG XY, PAN S X, et al. Genome-wide association study and Meta-QTL analysis of ear diameter trait in maize [J]. Plant Physiology Communications, 2017, 53(12): 2091−2102.(in Chinese) [6] WANG K J, LIU Y F, XU Q, et al. A post-GWAS confirming GPAT3 gene associated with pig growth and a significant SNP influencing its promoter activity [J]. Animal Genetics, 2017, 48(4): 478−482. doi: 10.1111/age.12567 [7] UZZAMAN M R, PARK J E, LEE K T, et al. A genome-wide association study of reproductive traits in a Yorkshire pig population [J]. Livestock Science, 2018, 209: 67−72. doi: 10.1016/j.livsci.2018.01.005 [8] IBEAGHA-AWEMU E M, PETERS S O, AKWANJI K A, et al. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits [J]. Scientific Reports, 2016, 6: 31109. doi: 10.1038/srep31109 [9] JESSICA A R, DANIEL Z. Evolution and function of genomic imprinting in plants [J]. Genes & Development, 2015, 29(24): 2517−2531. [10] PILVAR D, REIMAN M, PILVAR A, et al. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy [J]. Clinical Epigenetics, 2019, 11: 94. doi: 10.1186/s13148-019-0692-3 [11] PETERS J. The role of genomic imprinting in biology and disease: an expanding view [J]. Nature Reviews Genetics, 2014, 15(8): 517−530. doi: 10.1038/nrg3766 [12] LOPES M S, BASTIAANSEN J W M, JANSS L, et al. Estimation of additive, dominance, and imprinting genetic variance using genomic data [J]. G3-Genes Genomes Genetics, 2015, 5(12): 2629−2637. [13] HU Y D, ROSA G J, GIANOLA D. A GWAS assessment of the contribution of genomic imprinting to the variation of body mass index in mice [J]. BMC Genomics, 2015, 16: 576. doi: 10.1186/s12864-015-1721-z [14] CLAPCOTT S J, TEALE A J, KEMP S J. Evidence for genomic imprinting of the Major QTL controlling susceptibility to trypanosomiasis in mice [J]. Parasite Immunology, 2000, 22(5): 259−263. doi: 10.1046/j.1365-3024.2000.00308.x [15] WEN Y X, WU W R. Mapping of imprinted quantitative trait loci using immortalized F2 populations [J]. PLoS One, 2014, 9(3): e92989. doi: 10.1371/journal.pone.0092989 [16] DE KONING D J, BOVENHUIS H, VAN ARENDONK J A. On the detection of imprinted 513 quantitative trait loci in experimental crosses of outbred species [J]. Genetics, 2002, 161(2): 931−938. [17] FALCONER D S, MACKAY T F C. An Introduction to Quantitative Genetics[M]. Ed. 4. Longman Group, Essex, UK, 1996:12-28. [18] CHEVERUD J M, HAGER R, ROSEMAN C, et al. Genomic imprinting effects on adult body composition in mice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4253−4258. doi: 10.1073/pnas.0706562105 [19] HUANG X H, ZHAO Y, WEI X H, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm [J]. Nature Genetics, 2012, 44(1): 32−39. doi: 10.1038/ng.1018