• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自然群体随机交配的单个印迹QTL定位的初步研究

郑珂晖 黎哲镇 叶景山 周富杰 温永仙

郑珂晖,黎哲镇,叶景山,等. 基于自然群体随机交配的单个印迹QTL定位的初步研究 [J]. 福建农业学报,2019,34(12):1364−1370. doi: 10.19303/j.issn.1008-0384.2019.12.002
引用本文: 郑珂晖,黎哲镇,叶景山,等. 基于自然群体随机交配的单个印迹QTL定位的初步研究 [J]. 福建农业学报,2019,34(12):1364−1370. doi: 10.19303/j.issn.1008-0384.2019.12.002
ZHENG K H, LI Z Z, YE J S, et al. A Preliminary Study on Single Imprinted QTL Mapping Based on Random Mating of Natural Populations [J]. Fujian Journal of Agricultural Sciences,2019,34(12):1364−1370. doi: 10.19303/j.issn.1008-0384.2019.12.002
Citation: ZHENG K H, LI Z Z, YE J S, et al. A Preliminary Study on Single Imprinted QTL Mapping Based on Random Mating of Natural Populations [J]. Fujian Journal of Agricultural Sciences,2019,34(12):1364−1370. doi: 10.19303/j.issn.1008-0384.2019.12.002

基于自然群体随机交配的单个印迹QTL定位的初步研究

doi: 10.19303/j.issn.1008-0384.2019.12.002
基金项目: 国家自然科学基金项目(31571558);福建省自然科学基金项目(2017J01606);福建农林大学科技创新专项基金(KFA17028A)
详细信息
    作者简介:

    郑珂晖(1979−),男,博士,讲师,研究方向:生物信息学(E-mail:38193754@qq.com

    通讯作者:

    温永仙(1966−),女,博士,教授,研究方向:生物信息学(E-mail:wenyx9681@fafu.edu.cn

  • 中图分类号: Q 348

A Preliminary Study on Single Imprinted QTL Mapping Based on Random Mating of Natural Populations

  • 摘要:   目的  探索基于自然群体随机交配的单个印迹QTL的定位方法,分析影响定位准确性的关键因素。  方法  若印迹QTL决定的某一性状为数量性状,假设该性状与标记之间的关系存在线性关系,可以采用最小二乘法进行印迹QTL定位和遗传参数的估计。利用计算机模拟单点模拟标记、水稻真实自然群体标记进行印迹QTL定位,比较在不同最小等位基因频率(Minor allele frequency, MAF)、不同遗传率、不同随机交配轮数下的统计功效与参数估计精度,印迹QTL的显著性采用F检验和t检验。  结果  通过模拟研究,证明该试验设计对于检测单个印迹QTL是有效的,在MAF大于5%时,印迹遗传率大于10%时,定位与遗传参数估计趋于无偏。  结论  采用自然群体随机交配产生作图群体,可以用来进行单个印迹QTL的定位,定位的结果较好,是一种有效的试验设计,为下一步进行多个印迹QTL奠定了基础。
  • 图  1  自然群体随机交配示意图

    Figure  1.  Schematic diagram of random mating in natural populations

    图  2  水稻自然群体随机交配产生的群体SNP等位基因频率(p)示例(包含254个不同株系)

    Figure  2.  Examples of SNP allele frequencies (p) in populations from random mating of natural populations of rice (including 254 different lines)

    表  1  自然群体中基因型的频率与哑变量取值

    Table  1.   Frequency of genotypes and value of dummy variables in natural populations

    基因型 Genotype频率 Frequencyxzt
    adh
    A/Ap2100
    A/apq011
    a/Apq01−1
    A/Aq2−100
    下载: 导出CSV

    表  2  印迹类型与参数设置与缩写

    Table  2.   Imprint types, parameter settings, and abbreviations

    印迹类型
    Imprinting type
    简写
    abbreviation
    参数
    parameter
    来源于父本的表达
    Parental expression, Paternal
    PEP d=0且a=h
    来源于母本的表达
    Parental expression, Maternal
    PEM d=0且a=−h
    显性印迹(双相)
    Dominance imprinting, Bipolar
    DIB a=0且d=0
    显性印迹(单相)超显性
    Dominance imprinting, Polar, Over-dominance
    DIPOD a=0且d=h
    显性印迹(单相)低于显性
    Dominance imprinting, Polar, Under dominance
    DIPUD a=0且d=−h
    下载: 导出CSV

    表  3  单点模拟5种类型的iQTL定位结果

    Table  3.   Single-point simulation of 5 types of iQTL mapping results

    MAF/% H/% DIPOD DIPUD DIB PEM PEP
    a d h P/% a d h P/% a d h P/% a d h P/% a d h P/%
    RV 0 2.35 2.35 0 2.35 −2.35 0 0 2.35 2.35 0 −2.35 2.35 0 2.35
    5 5 0.18 2.2 2.4 85 0.07 2.25 −2.4 93 0.12 −0.1 2.35 88 2.41 −0.06 −2.35 91 2.16 0.24 2.35 87
    (1.17) (1.22) (0.31) (1.22) (1.23) (0.33) (1.19) (1.24) (0.37) (1.16) (1.22) (0.31) (1.04) (1.13) (0.29)
    RV 0 3.42 3.42 0 3.42 −3.42 0 0 3.42 3.42 0 −3.42 3.42 0 3.42
    5 10 0.09 3.31 3.45 83 0 3.47 −3.38 82 −0.02 −0.02 3.43 86 3.46 0.03 −3.45 92 3.37 0.1 3.38 86
    (1.19) (1.21) (0.35) (1.01) (1.06) (0.31) (1.19) (1.25) (0.35) (1.34) (1.35) (0.35) (1.03) (1.05) (0.29)
    RV 0 4.31 4.31 0 4.31 −4.31 0 0 4.31 4.31 0 −4.31 4.31 0 4.31
    5 15 0.07 4.28 4.34 90 −0.01 4.31 −4.35 90 0.03 −0.05 4.25 90 4.36 −0.05 −4.31 88 4.42 −0.08 4.33 85
    (1.2) (1.25) (0.27) (1.18) (1.26) (0.29) (1.24) (1.24) (0.33) (1.03) (1.03) (0.3) (1.03) (1.08) (0.32)
    RV 0 1.71 1.71 0 1.71 −1.71 0 0 1.71 1.71 0 −1.71 1.71 0 1.71
    10 5 −0.02 1.75 1.72 100 −0.04 1.75 −1.73 100 −0.04 0.06 1.72 100 1.64 0.06 −1.67 100 1.69 −0.02 1.69 100
    (0.53) (0.6) (0.21) (0.53) (0.55) (0.21) (0.57) (0.63) (0.23) (0.47) (0.58) (0.24) (0.57) (0.63) (0.22)
    RV 0 2.48 2.48 0 2.48 −2.48 0 0 2.48 2.48 0 −2.48 2.48 0 2.48
    10 10 −0.05 2.52 2.5 100 −0.05 2.53 −2.51 100 −0.02 0.03 2.51 100 2.54 −0.04 −2.51 100 2.59 −0.06 2.52 100
    (0.55) (0.61) (0.23) (0.57) (0.63) (0.25) (0.61) (0.7) (0.26) (0.51) (0.56) (0.2) (0.6) (0.62) (0.23)
    RV 0 3.13 3.13 0 3.13 −3.13 0 0 3.13 3.13 0 −3.13 3.13 0 3.13
    10 15 −0.04 3.18 3.12 100 −0.08 3.22 −3.13 100 −0.08 0.06 3.13 100 3.24 −0.05 −3.12 100 3.18 0.01 3.12 100
    (0.49) (0.57) (0.23) (0.52) (0.57) (0.23) (0.62) (0.65) (0.26) (0.47) (0.53) (0.22) (0.55) (0.59) (0.24)
    注:表中括号内为标准差,此处列出的为C=10,交配轮数为20的结果,表中H代表遗传率(Heritability),RV代表真值(Real value),P代表统计功效(Power)
    Note: The number in parentheses in the table is the standard deviation,C=10 and cross rounds is 20, H represents heritability, RV means real value and p means statistical power.
    下载: 导出CSV

    表  4  不同C值下5种印迹类型的iQTL定位结果

    Table  4.   iQTL mapping results of 5 imprint types under varied C values

    HCDIPOD DIPUD DIB PEM PEP
    POS/kbpadh POS/kbpadh POS/kbpadh POS/Kbpadh POS/kbpadhP/%
    RV 470 0 0.73 0.73 470 0 0.73 −0.73 470 0 0 0.73 470 0.73 0 −0.73 470 0.73 0 0.73
    10 2 470 −0.01 0.74 0.73 470 0.01 0.74 −0.72 470 0 0 0.74 470 0.73 0 −0.73 470 −0.01 0.74 0.73 100
    0 (0.1) (0.13) (0.07) 0 (0.09) (0.13) (0.07) 0 (0.1) (0.14) (0.08) 0 (0.1) (0.12) (0.08) 0 (0.1) (0.1) (0.1)
    RV 470 0 1.26 1.26 470 0 1.26 −1.26 470 0 0 1.26 470 1.26 0 −1.26 470 1.26 0 1.26
    10 6 470 0.02 1.25 1.28 470 −0.04 1.25 −1.28 470.02 0.01 0.01 1.26 470 1.27 0 −1.25 470 0.02 1.25 1.28 100
    0 (0.18) (0.23) (0.11) 0 (0.16) (0.18) (0.13) (0.2) (0.16) (0.22) (0.15) 0 (0.17) (0.21) (0.12) 0 (0.18) (0.2) (0.1)
    RV 470 0 0.93 0.93 470 0 0.93 −0.93 470 0 0 0.93 470 0.93 0 −0.93 470 0.93 0 0.93
    15 2 470 −0.01 0.92 0.93 470 0 0.9 −0.93 470 −0.01 0 0.92 470 0.95 0 −0.92 470 −0.01 0.92 0.93 100
    0 (0.1) (0.12) (0.07) 0 (0.1) (0.13) (0.07) 0 (0.11) (0.13) (0.09) 0 (0.1) (0.14) (0.07) 0 (0.1) (0.1) (0.1)
    RV 470 0 1.6 1.6 470 0 1.6 −1.6 470 0 0 1.6 470 1.6 0 −1.6 470 1.3 0 1.6
    15 6 470 0 1.59 1.59 470 0 1.62 −1.63 470 0.01 0.01 1.6 470 1.59 −0.03 −1.62 470 0 1.59 1.59 100
    0 (0.17) (0.2) (0.13) 0 (0.18) (0.22) (0.13) 0 (0.16) (0.19) (0.12) 0 (0.17) (0.2) (0.12) 0 (0.17) (0.2) (0.1)
    注:表中括号内为标准差,此处列出C=2、6,交配轮数为7次的结果,表中H代表遗传率,H代表遗传率(Heritability),C代表C值(C value),RV代表真值(Real value),P代表统计功效(Power),POS代表iQTL在染色体上的位置(iQTL position)。
    Note: The number in parentheses in the table is the standard deviation,the results listed here are the C values are 2 and 4,the number of mating rounds is 7, C represents C-value, RV represents real value, P represents statistical power and POS means the iQTL’s position on chromosome.
    下载: 导出CSV
  • [1] 凃欣, 石立松, 汪樊, 等. 全基因组关联分析的进展与反思 [J]. 生理科学进展, 2010, 41(2):87−94.

    TU X, SHI LS, WANG F, WANG Q. Genomewide Association Study: Advances, Challenges and Deliberation [J]. Progress in Physiological Sciences, 2010, 41(2): 87−94.(in Chinese)
    [2] LI F M, XIE J Y, ZHU X Y, et al. Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice(Oryza sativa L.) [J]. Frontiers in Plant Science, 2018, 9: 650. doi: 10.3389/fpls.2018.00650
    [3] WANG H R, XU X, VIEIRA F G, et al. The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication [J]. Molecular Plant, 2016, 9(7): 975−985. doi: 10.1016/j.molp.2016.04.018
    [4] 田润苗, 张雪海, 汤继华, 等. 玉米种子萌发相关性状的全基因组关联分析 [J]. 作物学报, 2018, 44(5):672−685. doi: 10.3724/SP.J.1006.2018.00672

    TIAN R M, ZHANG X H, TANG J H, et al. Genome-wide association studies of seed germination related traits in maize [J]. Acta Agronomica Sinica, 2018, 44(5): 672−685.(in Chinese) doi: 10.3724/SP.J.1006.2018.00672
    [5] 邵晓宇, 宋希云, 潘顺祥, 等. 玉米穗粗性状的全基因组关联分析及QTL元分析 [J]. 植物生理学报, 2017, 53(12):2091−2102.

    SHAO XY, SONG XY, PAN S X, et al. Genome-wide association study and Meta-QTL analysis of ear diameter trait in maize [J]. Plant Physiology Communications, 2017, 53(12): 2091−2102.(in Chinese)
    [6] WANG K J, LIU Y F, XU Q, et al. A post-GWAS confirming GPAT3 gene associated with pig growth and a significant SNP influencing its promoter activity [J]. Animal Genetics, 2017, 48(4): 478−482. doi: 10.1111/age.12567
    [7] UZZAMAN M R, PARK J E, LEE K T, et al. A genome-wide association study of reproductive traits in a Yorkshire pig population [J]. Livestock Science, 2018, 209: 67−72. doi: 10.1016/j.livsci.2018.01.005
    [8] IBEAGHA-AWEMU E M, PETERS S O, AKWANJI K A, et al. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits [J]. Scientific Reports, 2016, 6: 31109. doi: 10.1038/srep31109
    [9] JESSICA A R, DANIEL Z. Evolution and function of genomic imprinting in plants [J]. Genes & Development, 2015, 29(24): 2517−2531.
    [10] PILVAR D, REIMAN M, PILVAR A, et al. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy [J]. Clinical Epigenetics, 2019, 11: 94. doi: 10.1186/s13148-019-0692-3
    [11] PETERS J. The role of genomic imprinting in biology and disease: an expanding view [J]. Nature Reviews Genetics, 2014, 15(8): 517−530. doi: 10.1038/nrg3766
    [12] LOPES M S, BASTIAANSEN J W M, JANSS L, et al. Estimation of additive, dominance, and imprinting genetic variance using genomic data [J]. G3-Genes Genomes Genetics, 2015, 5(12): 2629−2637.
    [13] HU Y D, ROSA G J, GIANOLA D. A GWAS assessment of the contribution of genomic imprinting to the variation of body mass index in mice [J]. BMC Genomics, 2015, 16: 576. doi: 10.1186/s12864-015-1721-z
    [14] CLAPCOTT S J, TEALE A J, KEMP S J. Evidence for genomic imprinting of the Major QTL controlling susceptibility to trypanosomiasis in mice [J]. Parasite Immunology, 2000, 22(5): 259−263. doi: 10.1046/j.1365-3024.2000.00308.x
    [15] WEN Y X, WU W R. Mapping of imprinted quantitative trait loci using immortalized F2 populations [J]. PLoS One, 2014, 9(3): e92989. doi: 10.1371/journal.pone.0092989
    [16] DE KONING D J, BOVENHUIS H, VAN ARENDONK J A. On the detection of imprinted 513 quantitative trait loci in experimental crosses of outbred species [J]. Genetics, 2002, 161(2): 931−938.
    [17] FALCONER D S, MACKAY T F C. An Introduction to Quantitative Genetics[M]. Ed. 4. Longman Group, Essex, UK, 1996:12-28.
    [18] CHEVERUD J M, HAGER R, ROSEMAN C, et al. Genomic imprinting effects on adult body composition in mice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4253−4258. doi: 10.1073/pnas.0706562105
    [19] HUANG X H, ZHAO Y, WEI X H, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm [J]. Nature Genetics, 2012, 44(1): 32−39. doi: 10.1038/ng.1018
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  1660
  • HTML全文浏览量:  585
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-10-27
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回