Correlation between Single Nucleotide Polymorphism in 5' Regulation Region of IL-8 and Coccidiosis-Resistance of Jinghai Yellow Chicken
-
摘要:
目的 研究白介素8(IL-8)基因5′调控区单核苷酸突变对鸡柔嫩艾美耳球虫(E. tenella)抗性指标的影响。 方法 本试验利用DNA直接测序技术,检测京海黄鸡IL-8基因5′调控区单核苷酸多态性(SNPs),并对5′调控区的SNPs突变前后的转录因子进行预测,然后分析SNPs与柔嫩艾美耳球虫抗性指标的关联性。 结果 测序结果表明:IL-8基因5′调控区共检测到3个突变位点(T-550C、G-398T和T-360C),均形成了3种基因型,杂合度在0.436~0.471,PIC值在0.25~0.50,均属于中度多态,且3个突变位点均处于哈代-温伯格平衡状态。生物信息学分析表明:3个突变位点均改变了其原有的转录因子结合位点。关联分析显示:T-550C突变位点的TC型个体的IL-8表达量与TT型差异显著,TC型GSH-PX、CAT、IL-2、IL-6、IFN-γ指标均高于其他2种基因型,但差异不显著。G-398T突变位点的TT型个体SOD活性和GT型个体CAT活性均显著高于GG型;TT型个体NO含量与GG型差异极显著,与GT型差异显著;TT型IL-2表达量显著高于GT型。T-360C突变位点的TT型和TC型个体SOD活性与CC型差异极显著或差异显著;TT型和TC型个体的NO含量均显著高于CC型;TT型个体的IL-2、IL-8表达量均显著高于CC型。 结论 G-398T和T-360C突变位点的TT型个体球虫抗性优于其他基因型个体,T-550C突变位点的杂合型个体球虫抗性优于纯合型个体,表明IL-8基因5′调控区的突变对球虫抗性指标有显著的调控作用,可作为球虫病抗性鸡新品种或新品系的育种参考依据。 Abstract:Objective Correlation between the single nucleotide polymorphism (SNPs) in the 5' regulation region of IL-8 and the disease resistance to Eimeria tenella of chickens was studied. Method Direct DNA sequencing was performed to determine SNPs in IL-8 gene of Jinghai yellow chicken. Predicted transcription factors before and after mutation were analyzed to correlate between SNPs and coccidiosis-resistance of the birds. Result There were 3 SNPs at the mutation sites of T-550C, G-398T and T-360C detected in the target region that formed CT-, TT- and GG-genotypes with heterozygous degrees between 0.436 and 0.471 and PIC between 0.25 and 0.5. In a Hardy-Weinberg equilibrium state, SNPs were moderately polymorphic. A bioinformatics analysis confirmed that the original transcription factor binding sites in the genes had all been altered after the mutation. The expression of IL-8 of TC-genotype mutated at T-550C was significantly higher than that of TT-genotype. The coccidiosis-resistance indicators including GSH-PX, CAT, IL-2, IL-6 and IFN-γ in TC-genotype were higher than that in the other two genotypes, though not significantly. In genotypes mutated at G-398T, the SOD activity of TT-genotype and the CAT activity of GT-genotype were significantly higher than those of GG-genotype; the NO content of TT-genotype extremely significantly different from that of GG-genotype and significantly different from that of GT-genotype; and, the IL-2 expression of TT-genotype significantly higher than that of GT-genotype. Whereas, in the genotypes mutated at T-360C, the SOD activities of TT- and TC-genotypes were extremely significantly different or significantly different from that of CC-genotype; the NO contents of TT- and TC-genotypes significantly higher than that of the CC genotype; and, the IL-2 and IL-8 expressions of the TT genotype significantly higher than those of CC-genotypes. Conclusion It appeared that the TT-genotype with mutated G-398T or T-360C site would be more resistant to the parasitic attack by E. tenella than the other genotypes, and that hybrids of the genotypes carrying T-550C mutation would be more resistant than the homozygous counterparts. Thus, the significant regulation function of the polymorphism in the 5' regulation region of IL-8 gene could conceivably be targeted for breeding coccidiosis-resistant chickens. -
图 1 IL-8基因位点位点峰图及序列比对
注:A:T-550C位点峰图比对;B:G-398T位点峰图比对;C:T-360C位点峰图比对;D:T-550C位点序列比对图;E:G-398T位点序列比对图;F:T-360C位点序列比对图
Figure 1. Peak and sequence alignments of IL-8
Note: A: T-550C peak alignment; B: G-398T peak alignment; C: T-360C peak alignment; D: T-550C sequence alignment; E: G-398T sequence alignment; F: T-360C sequence alignment.
表 1 引物序列信息
Table 1. Information on primer sequence
引物 Primer 引物序列(5′→3′)Primers sequence(5′→3′) 退火温度 Annealing temperature/℃ 长度 Length/bp P1 F: TTCCATTCGCATAAGTCATC 51 638 R: AAAGTTGATTTGGGGATACC P2 F: TGTAATTGGGAATTCAAGGGGGA 58 708 R: CCCATTTGGTGTGTGATAAGATGA P3 F: AGTCCACAGACCACAAAGCA 58 693 R: TCGCAATATAAGTTTCTGATGGCTT P4 F: AAACCAGCAACACAAAGTC 60 574 R: CATCTCAGCAAGTGCCAAG 表 2 IL-8基因5′调控区单核苷酸突变位点信息
Table 2. Information on SNPs in 5′ regulation region of IL-8
序号 Site number 染色体位置 Chromosome position 序列号 Serial number 单核苷酸多态性 SNP 1 51282560 rs740065165 T-550C 2 51282712 rs731947764 G-398T 3 51282750 rs16409254 T-360C 注:A:T-550C位点峰图比对;B:G-398T位点峰图比对;C:T-360C位点峰图比对;D:T-550C位点序列比对图;E:G-398T位点序列比对图;F:T-360C位点序列比对图
Note: A: T-550C peak alignment; B: G-398T peak alignment; C: T-360C peak alignment; D: T-550C sequence alignment; E: G-398T sequence alignment; F: T-360C sequence alignment.表 3 IL-8基因5′调控区SNPs突变前后转录因子变化预测结果
Table 3. Predicted transcription factors before and after mutation of IL-8 in 5' regulation region
突变位点
Mutation site碱基
Base转录因子
Transcription factor转录因子结合位点碱基序列
Transcription factor binding site base sequence转录因子位置
Transcription factor position−550 bp T Oct-1 GTTGCATTTG −551~−542 bp C −398 bp G C/EBPalp GAAATAAATA −398~−389 bp T Pit-1a TAAATAAATA −398~−389 bp C/EBPalp ACATAAATAA −401~−392 bp −360 bp T NF-1 AGCCAGTTAT −362~−353 bp C 注:图中下划线标注为突变碱基。
Note: The underline in the figure is the mutant base.表 4 IL-8基因5′调控区多态性
Table 4. SNPs in 5′ regulation region of IL-8
突变位点
Mutation site基因型
Genotype数量
Number基因型频率
Genotype frequency等位基因
Allelic gene等位基因频率
Allele frequencyχ2值
χ2 valueP值
P value杂合度 H 有效等位
基因数 Ne多态信息含量
PICT-550C TT 40 0.435 T 0.679 1.390 0.500 0.436 1.772 0.341 CC 7 0.076 C 0.321 TC 45 0.489 G-398T GG 13 0.141 G 0.380 0.023 0.990 0.471 1.892 0.360 TT 35 0.381 T 0.720 GT 44 0.478 T-360C TT 40 0.435 T 0.674 0.725 0.699 0.440 1.784 0.343 CC 8 0.087 C 0.326 TC 44 0.478 注:PIC>0.50为高度多态;0.25<PIC<0.50为中度多态;PIC<0.25为低度多态[15]。
Note: PIC>0.50 is highly polymorphic; 0.25<PIC<0.50 is moderately polymorphic; PIC<0.25 means low polymorphism[15].表 5 IL-8基因T-550C突变位点各基因型与鸡球虫抗性指标关联分析
Table 5. Correlation between genotypes mutated at T-550C in IL-8 and coccidiosis-resistance indicators
指标
Indices基因型 Genotype TT(40) TC(45) CC(7) 超氧化物歧化酶(SOD)/(U·mL−1) 750.63±88.37 720.62±78.91 723.95±67.57 丙二醛(MDA)/(nmol·mL−1) 3.66±0.40 3.74±1.26 4.16±1.03 谷胱甘肽过氧化物酶(GSH-PX)/(U·mL−1) 151.77±16.94 152.22±17.53 150.83±22.52 过氧化氢酶(CAT)/(U·mL−1) 0.87±0.17 1.01±0.16 0.95±0.19 一氧化氮(NO)/(μmol·L−1) 52.35±5.25 A 49.62±3.79 AB 32.12±3.69 B 白介素1-β(IL-1β)/(ng·L−1) 20.54±2.00 19.75±3.04 20.22±1.19 白介素2(IL-2)/(ng·L−1) 14.78±2.66 15.82±2.04 15.18±2.69 白介素6(IL-6)/(ng·L−1) 69.93±3.55 72.40±8.64 67.81±4.29 白介素8(IL-8)/(ng·L−1) 90.87±7.63 b 119.11±10.42 a 109.06±11.76 ab 干扰素-γ(IFN-γ)/(ng·mL−1) 189.47±15.25 201.21±13.67 195.58±16.06 注:同行数据后不同大写字母表示差异极显著(P<0.01),不同小写字母表示差异显著(P<0.05),相同字母或无字母表示差异不显著(P>0.05),表6~7同。
Note: Different uppercase letters on a same row indicate significant differences (P<0.01); different lowercase letters, significant differences (P<0.05); and, same or no letter, no significant differences (P>0.05). Same for Tables 6–7.表 6 IL-8基因G-398T突变位点各基因型与鸡球虫抗性指标关联分析
Table 6. Correlation between genotypes mutated at G-398T in IL-8 and coccidiosis-resistance indicators
指标
Indices基因型 Genotype GG(13) GT(44) TT(35) 超氧化物歧化酶(SOD)/(U·mL−1) 631.43±50.73 b 667.21±27.41 ab 724.97±87.91 a 丙二醛(MDA)/(nmol·mL−1) 3.66±0.40 3.63±0.39 3.19±0.73 谷胱甘肽过氧化物酶(GSH-PX)/(U·mL−1) 164.04±21.41 155.20±20.63 158.58±19.50 过氧化氢酶(CAT)/(U·mL−1) 0.84±0.10 b 1.05±0.15 a 0.91±0.18 一氧化氮(NO)/(μmol·L−1) 24.18±4.26 Bab 32.67±9.88 ABb 45.89±11.63 Aa 白介素1-β(IL-1β)/(ng·L−1) 20.45±1.70 22.51±1.30 23.17±1.65 白介素2(IL-2)/(ng·L−1) 15.17±2.54 ab 13.66±1.38 b 16.51±3.10 a 白介素6(IL-6)/(ng·L−1) 65.66±6.05 71.01±7.81 68.40±7.30 白介素8(IL-8)/(ng·L−1) 94.31±9.86 104.24±7.70 105.89±13.30 干扰素-γ(IFN-γ)/(ng·mL−1) 183.25±17.99 179.94±15.83 175.99±17.26 表 7 IL-8基因T-360C突变位点各基因型与鸡球虫抗性指标关联分析
Table 7. Correlation between genotypes mutated at T-360C in IL-8 and coccidiosis-resistance indicators
指标 Indices 基因型 Genotype TT(40) TC(44) CC(8) 超氧化物歧化酶(SOD)/(U·mL−1) 781.29±76.94 Aab 706.31±72.85 ABa 652.43±44.92 Bb 丙二醛(MDA)/(nmol·mL−1) 4.01±1.20 3.91±0.49 4.23±0.79 谷胱甘肽过氧化物酶(GSH-PX)/(U·mL−1) 124.34±11.73 117.17±13.46 116.68±14.53 过氧化氢酶(CAT)/(U·mL−1) 0.77±0.16 0.86±0.30 0.74±0.14 一氧化氮(NO)/(μmol·L−1) 46.91±11.24 a 45.50±9.28 a 35.03±8.11 b 白介素1-β(IL-1β)/(ng·L−1) 20.11±1.03 20.65±1.84 21.55±2.73 白介素2(IL-2)/(ng·L−1) 15.82±2.04 a 13.82±1.84 ab 12.46±1.55 b 白介素6(IL-6)/(ng·L−1) 62.74±10.21 60.80±9.47 57.92±9.38 白介素8(IL-8)/(ng·L−1) 103.19±14.94 a 91.30±13.82 ab 83.15±13.01 b 干扰素-γ(IFN-γ)/(ng·mL−1) 163.28±13.49 b 168.75±15.29 b 193.31±16.32 a -
[1] HUANG G P, TANG X L, BI F F, et al. Eimeria tenella Infection Perturbs the Chicken Gut Microbiota from the Onset of Oocyst Shedding [J]. Veterinary Parasitology, 2018, 258: 30−37. doi: 10.1016/j.vetpar.2018.06.005 [2] BLAKE D P, TOMLEY F M. Securing poultry production from the ever-present Eimeria challenge [J]. Trends in Parasitology, 2014, 30(1): 12−19. doi: 10.1016/j.pt.2013.10.003 [3] 林雨鑫, 张菁菁, 戴国俊, 等. 京海黄鸡杂交配套系亲本对柔嫩艾美耳球虫的敏感性 [J]. 中国兽医学报, 2015, 35(7):1074−1078.LIN Y X, ZHANG J J, DAI G J, et al. Comparation of the sensitivity of E.tenella among Jinghai yellow chicken hybrid matching system [J]. Chinese Journal of Veterinary Science, 2015, 35(7): 1074−1078.(in Chinese) [4] 王诗琴, 辛世杰, 王晓慧, 等. IL-6基因启动子区单核苷酸多态对京海黄鸡柔嫩艾美尔球虫抗性指标的影响 [J]. 扬州大学学报(农业与生命科学版), 2018, 39(1):36−41.WANG S Q, XIN S J, WANG X H, et al. The effects of IL-6 gene promoter region single nucleotide polymorphism to Eimeria tenella resistance index in Jinghai yellow chickens [J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2018, 39(1): 36−41.(in Chinese) [5] JANG S I, LILLEHOJ H S, LEE S H, et al. Immunoenhancing effects of MontanideTM Isa oil-based adjuvants on recombinant Coccidia antigen vaccination against Eimeria acervulina infection [J]. Veterinary Parasitology, 2010, 172(3/4): 221−228. [6] ABBAS R Z, IQBAL Z, BLAKE D, et al. Anticoccidial drug resistance in fowl Coccidia: the state of play revisited [J]. World's Poultry Science Journal, 2011, 67(2): 337−350. doi: 10.1017/S004393391100033X [7] COUSSENS L M, WERB Z. Inflammation and cancer [J]. Nature, 2002, 420(6917): 860−867. doi: 10.1038/nature01322 [8] 辛世杰, 王晓慧, 戴国俊, 等. 京海黄鸡柔嫩艾美尔球虫感染对脾脏和盲肠IL-6、IL-8、CCLi2基因表达量的影响及其相关性 [J]. 浙江农业学报, 2019, 31(1):39−46. doi: 10.3969/j.issn.1004-1524.2019.01.05XIN S J, WANG X H, DAI G J, et al. Effect and correlation analysis of Eimeria tenella infection on IL-6, IL-8 and CCLi2 genes expression in spleen and Caecum of Jinghai Yellow Chicken(Gallus gallus) [J]. Acta Agriculturae Zhejiangensis, 2019, 31(1): 39−46.(in Chinese) doi: 10.3969/j.issn.1004-1524.2019.01.05 [9] CORNELISSEN J B W J, SWINKELS W J C, BOERSMA W A, et al. Host response to simultaneous infections with Eimeria acervulina, maxima and tenella: A cumulation of single responses [J]. Veterinary Parasitology, 2009, 162(1/2): 58−66. [10] SWAGGERTY C L, PEVZNER I Y, KOGUT M H. Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella [J]. Poultry Science, 2015, 94(1): 37−42. doi: 10.3382/ps/peu053 [11] 陈仁金, 杨章平, 毛永江, 等. 中国荷斯坦牛IL-8基因遗传多态性与泌乳性状以及体细胞评分的关联 [J]. 遗传, 2010, 32(12):1256−1262.CHEN R J, YANG Z P, MAO Y J, et al. Genetic polymorphism of the IL-8 gene and its associations with milk traits and SCS in Chinese Holstein [J]. Hereditas, 2010, 32(12): 1256−1262.(in Chinese) [12] 林雨鑫. 京海黄鸡柔嫩艾美耳球虫感染后盲肠转录组分析及其杂交配套系亲本的抗性评价[D]. 扬州: 扬州大学, 2015.LIN Y X. RNA Sequencing Analysis of Chicken Cecum Tissues Following E. tenella Infection and Coccidiosis Evaluation of Jinghai Yellow Chicken Cross-breeding System Parents[D]. Yangzhou: Yangzhou University, 2015.(in Chinese) [13] 杨军. 益生菌对柔嫩艾美尔球虫感染雏鸡免疫水平的影响及免疫保护效果评价[D]. 长春: 吉林农业大学, 2015.YANG J. Studies on effect of probiotics on chicken immunity levels and the evaluation of immune protective effect on Eimeria tenella[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese) [14] 李玲秀. 茶多酚与茶皂素对隐性感染球虫的肉鸡生长、免疫力及抗氧化性能的影响[D]. 合肥: 安徽农业大学, 2014.LI L X. The influence of tea polyphenols and tea saponin on growth, immunity and antioxidant ability of broilers with Coccidium latent infection[D]. Hefei: Anhui Agricultural University, 2014. (in Chinese) [15] 李秀秀, 王文文, 郝园丽, 等. 寿光鸡AANAT基因5′调控区的单核苷酸多态性及其与产蛋性状的关联分析 [J]. 农业生物技术学报, 2017, 25(6):921−929.LI X X, WANG W W, HAO Y L, et al. SNPs in 5′ regulatory region of AANAT gene and the association analysis with laying traits in Shouguang chickens(Gallus gallus) [J]. Journal of Agricultural Biotechnology, 2017, 25(6): 921−929.(in Chinese) [16] 宁娟. 猪繁殖与呼吸综合征病毒感染Marc-145细胞激活白细胞介素8的表达的研究[D]. 武汉: 华中农业大学, 2009.NING J. Study on the Induction of Interleukin-8 by Porcine Reproductive and Respiratory Syndrome Virus in Marc-145 Cells[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) [17] WU Y P, CAO C, WU Y F, et al. Activating transcription factor 3 represses cigarette smoke-induced IL6 and IL8 expression via suppressing NF-κB activation [J]. Toxicology Letters, 2017, 270: 17−24. doi: 10.1016/j.toxlet.2017.02.002