• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻CIPK基因家族的鉴定及OsCIPK5受稻瘟病菌诱导的qRT-PCR分析

喻丝丝 罗曦 连玲 许惠滨 陈丽萍 魏毅东 蔡秋华 谢华安 张建福

喻丝丝,罗曦,连玲,等. 水稻 CIPK基因家族的鉴定及 OsCIPK5受稻瘟病菌诱导的qRT-PCR分析 [J]. 福建农业学报,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001
引用本文: 喻丝丝,罗曦,连玲,等. 水稻 CIPK 基因家族的鉴定及 OsCIPK5 受稻瘟病菌诱导的qRT-PCR分析 [J]. 福建农业学报,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001
YU S S, LUO X, LIAN L, et al. Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae [J]. Fujian Journal of Agricultural Sciences,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001
Citation: YU S S, LUO X, LIAN L, et al. Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae [J]. Fujian Journal of Agricultural Sciences,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001

水稻CIPK基因家族的鉴定及OsCIPK5受稻瘟病菌诱导的qRT-PCR分析

doi: 10.19303/j.issn.1008-0384.2019.11.001
基金项目: 国家重点研发计划项目(2016YFD0300508);福建省科技计划公益类专项(2018R1021-5);福建省财政专项——福建省农业科学院科技创新团队建设项目(STIT2017-1-1)
详细信息
    作者简介:

    喻丝丝(1987−),女,博士研究生,主要从事水稻抗逆分子生物学研究(E-mail:349026685@qq.com

    通讯作者:

    谢华安(1941−),男,研究员,主要从事杂交水稻育种研究(E-mail:huaanxie@163.com

    张建福(1971−),男,博士,研究员,主要从事水稻分子设计育种研究(E-mail:jianfzhang@163.com

  • 中图分类号: S 511

Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae

  • 摘要:   目的  植物通过启动一系列信号传导过程来应对外部环境,这些过程通常涉及多种蛋白激酶,包括钙调神经磷酸酶B样蛋白互作激酶(calcineurin B-like protein-interacting protein kinases, CIPKs)。为更加清晰全面地了解水稻CIPK基因家族,本研究根据最新的基因组测序数据对水稻基因组中的CIPKs进行了鉴定。  方法  通过探讨拟南芥和水稻中CIPKs蛋白家族的结构特点,结合生物信息学和qRT-PCR技术系统分析水稻中CIPKs家族蛋白的结构。结合转录组数据,比较了粳稻云引受稻瘟病菌诱导后的表达情况。  结果  根据最新的水稻基因组数据,鉴定出31个水稻OsCIPK基因。系统发育树分析结果表明,31个OsCIPK基因可分为5个亚家族,这些亚家族具有不同的外显子-内含子和UTR的结构特点。从广谱抗稻瘟病品种粳稻云引受稻瘟病菌诱导的基因表达谱的趋势聚类中筛选出了OsCIPK5基因并对其进行了表达分析,结果表明,云引中OsCIPK5基因受稻瘟病菌的诱导表达。  结论  内含子缺失和片段重复在水稻OsCIPK基因家族的扩展中起到重要作用,同时OsCIPK5受到稻瘟病菌的诱导表达。
  • 图  1  水稻CIPK基因染色体分布及染色体间关系

    注:红色线表示直系同源的CIPK基因对。染色体数显示在每条染色体的底部

    Figure  1.  Chromosomal distribution and inter-chromosomal relationship of CIPKs in rice

    Note: Red line indicates homology pair of CIPKs. Number of chromosomes is shown at bottom of each chromosome.

    图  2  水稻CIPK基因的系统发育分类、基因结构及保守蛋白基序的特征

    注:① a为系统发育树,b为蛋白基序结构特征,c为基因结构;② OsCIPK系统发育树分为五组:A、B、C、D和E,用不同的颜色标出;③b图标尺为氨基酸长度,c图标尺为核苷酸长度;④绿色方框表示UTR,黄色方框表示CDS,黑线表示内含子,其他颜色方框代表保守结构域。

    Figure  2.  Phylogenetic relationships, gene structure and architecture of conserved protein motifs in CIPKs from rice

    Note: ① a, phylogenetic tree; b, protein motif structure; and c, gene structure. ② OsCIPK phylogenetic tree was divided into 5 groups -A, B, C, D, and E- shown in different colors. ③ The ruler of b is for amino acid length; and the ruler of c is for nucleotide length. ④ Green box shows UTR; yellow box shows CDs; black line shows introns; and boxes of other colors show conservative domains.

    图  3  水稻和拟南芥中CIPK蛋白的系统发育分析

    Figure  3.  Phylogenetic trees constructed with 26 CIPKs from A. thaliana and 31 CIPKs from rice

    图  4  OsCIPK5在稻瘟病菌侵染后不同时间段的表达情况

    Figure  4.  Expressions of OsCIPK5 at times after M. grisea induction

    表  1  OsCIPK5Actin的引物序列

    Table  1.   The primer sequence of OsCIPK5 and Actin

    基因 Genesq-Fq-R
    OsCIPK5CAGAGCGTCGCCATCAAGGTCGTGACAGAAGTCCACAGCCCCTATC
    ActinCCTCGTCTGCGATAATGGAACTGCCCTGGGCGCATCATCTC
    下载: 导出CSV

    表  2  水稻基因组CIPK家族的特征

    Table  2.   Characteristics of CIPK family in rice genome

    基因名称
    Name of gene
    转录本ID(RAP-DB)
    Transcriptome
    染色体位置
    Locus of chromosome
    氨基酸长度
    Length of amino acid
    等电点(PI)
    Isoelectric point
    分子量(WM)
    Weight of molecular/kDa
    OsCIPK1Os01t0292200-01chr1:10622951-106275324626.2652.20
    OsCIPK2Os07t0678600-01chr7:28726817-287295274449.1850.27
    OsCIPK3Os07t0687000-01chr7:29191197-291941874466.950.95
    OsCIPK5Os01t0206700-03chr1:5809589-58113894629.2851.97
    OsCIPK6Os08t0441100-01chr8:21467453-214685933055.4432.48
    OsCIPK7Os03t0634400-01chr3:24226372-242279304489.3548.37
    OsCIPK8Os01t0536000-01chr1:19469262-194775904476.4550.60
    OsCIPK9Os03t0126800-00chr3:1515355-15189474798.3153.78
    OsCIPK10Os03t0339900-01chr3:12630705-126351824529.0151..49
    OsCIPK11Os01t0824600-01chr1:35228913-352317255038.4856.56
    OsCIPK12Os01t0759400-02chr1:31943529-319485805418.359.81
    OsCIPK13Os01t0206300-00chr1:5799607-58011425128.0556.01
    OsCIPK14Os12t0113500-01chr12:679079-6821434409.4450.32
    OsCIPK15Os11t0113700-01chr11:630585-6336224359.5349.70
    OsCIPK16Os09t0418000-03chr9:15009182-150107164578.8450.50
    OsCIPK17Os05t0136200-01chr5:2113595-21171104556.9350.92
    OsCIPK18Os05t0332300-01chr5:15556085-155604044588.8451.50
    OsCIPK19Os05t0514200-01chr5:25489349-254913195097.2656.91
    OsCIPK20Os05t0208100-01chr5:6701053-67029334678.2951.35
    OsCIPK21Os07t0637000-01chr7:26464444-264688584457.9650.10
    OsCIPK22Os05t0334750-00chr5:15643309-156447324528.0349.32
    OsCIPK23Os07t0150700-01chr7:2643540-26477734519.2350.71
    OsCIPK24Os06t0606000-01chr6:24038959-240447854548.5250.94
    OsCIPK25Os06t0543400-01chr6:20490388-204922715158.7856.98
    OsCIPK26Os02t0161000-01chr2:3283264-32863664949.1355.91
    OsCIPK27Os09t0418500-00chr9:15027311-150343008095.5387.30
    OsCIPK28Os05t0476350-00chr5:23430891-234321984369.3249.33
    OsCIPK29Os07t0678300-01chr7:28710749-287124704448.6948.21
    OsCIPK30Os01t0759200-01chr1:31938559-319401844779.3453.56
    OsCIPK31Os03t0319400-01chr3:11526273-115303064507.9850.95
    OsCIPK33Os11t0134300-01chr11:1605182-16091304066.1346.60
    下载: 导出CSV

    表  3  水稻基因组中的直系同源CIPK基因对的Ka/Ks比值

    Table  3.   Ka/Ks value of orthologous CIPK gene pairs in rice genome

    直系同源CIPK基因对
    The homologous CIPK gene pair
    KaKsKa/Ks
    OsCIPK31/OsCIPK30.113 65 1.115 82 0.101 85
    OsCIPK15/OsCIPK140.004 17 0.035 81 0.116 45
    OsCIPK11/OsCIPK280.161 62 0.880 47 0.183 55
    OsCIPK5/OsCIPK200.221 63 1.297 74 0.170 78
    OsCIPK6/OsCIPK270.348 63 0.529 36 0.658 59
    下载: 导出CSV
  • [1] BAUM G, LONG J C, JENKINS G I, et al. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+ [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(23): 13554−13559. doi: 10.1073/pnas.96.23.13554
    [2] EVANS N H, MCAINSH M R, HETHERINGTON A M. Calcium oscillations in higher plants [J]. Current Opinion in Plant Biology, 2001, 4(5): 415−420. doi: 10.1016/S1369-5266(00)00194-1
    [3] KNIGHT H, KNIGHT M R. Abiotic stress signalling pathways: specificity and cross-talk [J]. Trends in Plant Science, 2001, 6(6): 262−267. doi: 10.1016/S1360-1385(01)01946-X
    [4] MACROBBIE E A C. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 12361−12368. doi: 10.1073/pnas.220417197
    [5] SANDERS D, BROWNLEE C, HARPER J F. Communicating with calcium [J]. The Plant Cell, 1999, 11(4): 691. doi: 10.1105/tpc.11.4.691
    [6] CHENG S H, WILLMANN M R, CHEN H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J]. Plant Physiology, 2002, 129(2): 469−485. doi: 10.1104/pp.005645
    [7] HARMON A C, GRIBSKOV M, GUBRIUM E, et al. The CDPK superfamily of protein kinases [J]. New Phytologist, 2001, 151(1): 175−183. doi: 10.1046/j.1469-8137.2001.00171.x
    [8] LUAN S, RODRIGUEZCONCEPCION M, YALOVSKY S, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. The Plant Cell, 2002, 14: S389−400. doi: 10.1105/tpc.001115
    [9] SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants [J]. New Phytologist, 2001, 151(1): 35−66. doi: 10.1046/j.1469-8137.2001.00154.x
    [10] ZIELINSKI R E. Calmodulin and calmodulin-binding proteins in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 697−725. doi: 10.1146/annurev.arplant.49.1.697
    [11] LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730−3734. doi: 10.1073/pnas.97.7.3730
    [12] ISHITANI M, LIU J P, HALFTER U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. The Plant Cell, 2000, 12(9): 1667−1677. doi: 10.1105/tpc.12.9.1667
    [13] SÁNCHEZ-BARRENA M J, MARTÍNEZ-RIPOLL M, ZHU J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response [J]. Journal of Molecular Biology, 2005, 345(5): 1253−1264. doi: 10.1016/j.jmb.2004.11.025
    [14] GONG D M, GUO Y, SCHUMAKER K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiology, 2004, 134(3): 919−926. doi: 10.1104/pp.103.037440
    [15] SHI H Z, ISHITANI M, KIM C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6896−6901. doi: 10.1073/pnas.120170197
    [16] QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8436−8441. doi: 10.1073/pnas.122224699
    [17] QIU Q S, GUO Y, QUINTERO F J, et al. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway [J]. Journal of Biological Chemistry, 2004, 279(1): 207−215. doi: 10.1074/jbc.M307982200
    [18] XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress [J]. The Plant Cell, 2002, 14(S1): S165−183.
    [19] ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53(1): 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
    [20] KOLUKISAOGLUÜ, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134(1): 43−58. doi: 10.1104/pp.103.033068
    [21] XIANG Y, HUANG Y M, XIONG L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144(3): 1416−1428. doi: 10.1104/pp.107.101295
    [22] CHEN X F, GU Z M, LIU F, et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses [J]. Rice Science, 2011, 18(1): 1−9. doi: 10.1016/S1672-6308(11)60001-2
    [23] HOLUB E B. The arms race is ancient history in Arabidopsis, the wildflower [J]. Nature Reviews Genetics, 2001, 2(7): 516−527. doi: 10.1038/35080508
    [24] YU Y H, XIA X L, YIN W L, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus [J]. Plant Growth Regulation, 2007, 52(2): 101−110. doi: 10.1007/s10725-007-9165-3
    [25] KANWAR P, SANYAL S K, TOKAS I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice [J]. Cell Calcium, 2014, 56(2): 81−95. doi: 10.1016/j.ceca.2014.05.003
    [26] ROY S W, PENNY D. Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana [J]. Molecular Biology and Evolution, 2007, 24(1): 171−181.
    [27] NURUZZAMAN M, MANIMEKALAI R, SHARONI A M, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30−44.
    [28] KLEIST T J, SPENCLEY A L, LUAN S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages [J]. Frontiers in Plant Science, 2014(5): 187.
    [29] ZHANG H F, YANG B, LIU W Z, et al. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.) [J]. BMC Plant Biology, 2014, 14(1): 8. doi: 10.1186/1471-2229-14-8
    [30] KUDLA J, BATISTIČ O, HASHIMOTO K. Calcium signals: the lead currency of plant information processing [J]. The Plant Cell, 2010, 22(3): 541−563. doi: 10.1105/tpc.109.072686
    [31] HU H C, WANG Y Y, TSAY Y F. AtCIPK8, a CBL‐interacting protein kinase, regulates the low-affinity phase of the primary nitrate response [J]. Plant Journal, 2009, 57(2): 264−278. doi: 10.1111/j.1365-313X.2008.03685.x
    [32] CHUNG E, PARK J M, OH S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses [J]. Planta, 2004, 220(2): 286−295. doi: 10.1007/s00425-004-1372-9
    [33] LUDWIG A A, SAITOH H, FELIX G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10736−10741. doi: 10.1073/pnas.0502954102
    [34] FROHNMEYER H, LOYALL L, BLATT M R, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures [J]. Plant Journal, 1999, 20(1): 109−117. doi: 10.1046/j.1365-313X.1999.00584.x
    [35] TREWAVAS A J, MALHÓ R. Ca2+ signalling in plant cells: the big network! [J]. Current Opinion in Plant Biology, 1998, 1(5): 428−443. doi: 10.1016/S1369-5266(98)80268-9
    [36] TRAN P O T, HINMAN L E, UNGER G M, et al. A wound-induced[Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility [J]. Experimental Cell Research, 1999, 246(2): 319−326. doi: 10.1006/excr.1998.4239
    [37] YANG W Q, KONG Z S, OMO-IKERODAH E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) [J]. Journal of Genetics and Genomics, 2008, 35(9): 531−543. doi: 10.1016/S1673-8527(08)60073-9
    [38] OHBA H, STEWARD N, KAWASAKI S, et al. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins [J]. Molecular and General Genetics, 2000, 263(2): 359−366. doi: 10.1007/s004380051179
    [39] KIM K N, LEE J S, HAN H E, et al. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts [J]. Plant Molecular Biology, 2003, 52(6): 1191−1202. doi: 10.1023/B:PLAN.0000004330.62660.a2
    [40] LEE K W, CHEN P W, LU C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding [J]. Science Signaling, 2009, 2(91): ra61.
    [41] HUANG F, LIAN L, HE W, et al. Genome-wide profiling of changes in gene expression in response to infection of the japonica rice variety Yunyin by Magnaporthe oryzae [J]. Molecular Breeding, 2014, 34(4): 1965−1974. doi: 10.1007/s11032-014-0155-7
    [42] DENG X M, HU W, WEI S Y, et al. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco [J]. PLoS One, 2013, 8(7): e69881. doi: 10.1371/journal.pone.0069881
    [43] CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4(1): 10. doi: 10.1186/1471-2229-4-10
    [44] ZHU J K, LIU J P, XIONG L M. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition [J]. The Plant Cell, 1998, 10(7): 1181−1191. doi: 10.1105/tpc.10.7.1181
    [45] LI L, KIM B G, CHEONG Y H, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12625−12630. doi: 10.1073/pnas.0605129103
    [46] XU J, LI H D, CHEN L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125(7): 1347−1360. doi: 10.1016/j.cell.2006.06.011
    [47] MARTÍNEZ -ATIENZA J, JIANG X Y, GARCIADEBLAS B, et al. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiology, 2007, 143(2): 1001−1012. doi: 10.1104/pp.106.092635
    [48] HAYASHI K, YOSHIDA H, ASHIKAWA I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics, 2006, 113(2): 251−260. doi: 10.1007/s00122-006-0290-6
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  3630
  • HTML全文浏览量:  1005
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2019-11-02
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回