Tribenuron-methyl Tolerance of Brassica napus Restorer Line 18Z363
-
摘要:
目的 研究不同剂量苯磺隆对甘蓝型油菜苗期叶绿素含量、存活率及成熟期农艺性状的影响,为波里马细胞质不育(polima cytoplasmic male sterility, pol CMS)恢复系18Z363筛选安全、有效、经济的苯磺隆除草剂施用量提供依据。 方法 以pol CMS恢复系18Z363、M342、2350C及杂交种LDX95-58A×18Z363为试验材料,盆栽种植于4-6叶期喷施不同剂量的苯磺隆,7 d后采用SPAD-502叶绿素测定仪测量叶片的叶绿素含量,14 d后调查存活率;大田种植4-6叶期喷施不同剂量的苯磺隆,于成熟期考察主要农艺性状。 结果 油菜叶片叶绿素含量SPAD值随苯磺隆施用剂量的增加而下降,在18.0 g·hm−2及以上剂量处理下,不抗除草剂材料2350C叶片叶绿素含量SPAD值显著下降到较低水平,而抗除草剂材料18Z363、M342及杂交种LDX95-58A×18Z363的SPAD值仍保持较高水平;18.0 g·hm−2处理下不抗除草剂材料2350C存活率为0,而18Z363、M342及杂交种LDX95-58A×18Z363存活率在88.9%以上;高于18.0 g·hm−2剂量的苯磺隆处理对18Z363、M342及杂交种LDX95-58A×18Z363成熟期的主要农艺性状造成不同程度的负面影响。 结论 pol CMS恢复系18Z363及配制的“三系”杂交种的最适苯磺隆施用剂量为18.0 g·hm−2。 Abstract:Objective Effects of the herbicide, tribenuron-methylon, in varied concentrations on the survival rate, chlorophyll content, and agronomic traits of Brassica napus L. were studied to determine the appropriate dosage for field application. Method In a pot experiment, seedlings of B. napus polima cytoplasmic male sterility (polCMS) restorer lines, including 18Z363, M342, 2350C, and the hybrid (LDX95-58A×18Z363), at 4 to 6 leaves stage were sprayed with tribenuron-methylon solutions in varied concentrations. Chlorophyll contents in leaves of the plants were measured 7d after treatments using a SPAD-502 chlorophyll meter. Survival rates of the seedlings were determined 14d after the spraying. In the field, agronomic traits of the mature plants, which had been treated at 4 to 6 leaves stage, were observed. Result Overall, the leaf SPAD decreased with increasing herbicide dosage applied on the plants. When the application dosage was greater than or equal to 18.0 g·hm−2 , it declined significantly in the herbicide-susceptible line 2350C reaching a low level, but remained high in the resistant lines 18Z363, M342, and the hybrid. Meanwhile, all 2350C seedlings died in 2 weeks, whereas, more than 88.9% of 18Z363, M342 or the hybrid survived the treatments. Once the herbicide application was beyond 18.0 g·hm−2, even the resistant species began to show ill-effects in varying degrees on the agronomic traits. Conclusion The results appeared that the upper limit of tribenuron-methyl usage around the restorer line18Z363 and its hybrids was 18.0 g·hm−2. -
Key words:
- Brassica napus L. /
- tribenuron-methyl /
- herbicide /
- restorer lines
-
表 1 苯磺隆各处理施药量
Table 1. Dosages of tribenuron-methyl applied for treatments
处理
Treatments苯磺隆质量浓度
Concentration of tribenuron-methyl/(mg·L−1)苯磺隆用量
Application dosage of tribenuron-methyl /(g·hm−2)施用有效成分量
Dose of tribenuron-methyl /(g·hm−2)CK 0 0.0 0.0 T1 200 90.0 9.0 T2 400 180.0 18.0 T3 600 270.0 27.0 T4 800 360.0 36.0 表 2 不同剂量苯磺隆处理后叶片叶绿素含量SPAD值
Table 2. Chlorophyll SPAD in leaves of rapeseed plants being sprayed with tribenuron-methyl at various dosages
处理
Treatments叶绿素含量SPAD值 The chlorophyll SPAD value 2350C M342 18Z363 LDX95-58A×18Z363 CK 42.7±1.7a 44.2±1.7a 41.8±1.3a 45.4±1.8a T1 39.2±1.1b 42.6±1.4ab 39.7±0.5ab 42.8±0.9b T2 22.7±0.8c 40.3±0.6b 38.4±0.6b 38.2±1.0c T3 19.3±1.3d 35.9±1.2c 35.7±1.3c 33.6±1.3d T4 16.9±1.0d 34.0±1.7c 32.5±2.3c 26.5±1.5e 注:同一列不同小写字母表示显著差异(P<0.05),表3、4同。
Note:The different small letters in the same column represent significances difference (P<0.05),the same as Table 3 - 4.表 3 不同剂量苯磺隆处理后油菜的存活率
Table 3. Survival rate of rapeseed plants being sprayed with tribenuron-methyl at various dosages
处理
Treatments存活率 Survival rate/% 2350C M342 18Z363 LDX95-58A×18Z363 CK 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a T1 57.8±5.1b 98.9±1.9a 96.7±3.3a 93.3±3.3b T2 0.0±0.0c 97.8±1.9a 93.3±3.3ab 88.9±3.8b T3 0.0±0.0c 86.7±3.3b 85.6±5.1b 78.9±5.1c T4 0.0±0.0c 73.3±6.7c 75.6±5.1c 55.6±1.9d 表 4 不同剂量苯磺隆处理对油菜成熟期主要农艺性状的影响
Table 4. Effectsof main agronomic traitsunder different dose of tribenuron-methyltreatments
材料
Material处理
Treatments株高
Plant
height
/cm分枝高
Branch
height
/cm一次
分枝数
First
branch
number二次
分枝数
Second
branch
number含油量
Oil
content
/%每角粒数
Seeds per pod千粒重
Thousand seed
weight /g单株角果数
Number of pods per
plant主花序长
Length of main inflorescence /cm主花序角果数
Number of pods per main inflorescence单株产量
Yield per plant /g18Z363 CK 180.6±4.4 a 66.6±6.3 b 8.6±0.6 a 15.3±1.1 a 44.3±0.9 a 17.7±1.0 a 3.3±0.4 a 342.5±19.0 a 62.5±4.5 a 77.8±5.2 a 17.7±0.8 a T1 181.1±4.3 a 65.2±9.8 b 9.0±0.6 a 15.9±1.6 a 45.3±2.4 a 17.3±1.2 a 3.4±0.2 a 336.1±13.2 a 62.2±4.2 a 75.2±8.0 a 17.7±2.9 a T2 180.4±3.9 a 69.1±3.9 b 8.9±0.6 a 15.5±1.2 a 43.7±3.0 a 17.5±2.1 a 3.3±0.3 a 335.3±19.0 a 61.4±3.3 ab 73.1±6.0 a 16.5±3.2 a T3 178.2±2.6 a 71.1±2.7 ab 7.1±0.3 b 11.1±0.8 b 44.3±2.1 a 17.0±1.0 a 3.4±0.3 a 277.9±8.6 b 58.5±6.3 ab 67.0±5.8 a 14.0±2.5 ab T4 168.6±3.1 b 81.2±2.0 a 6.6±0.5 b 8.8±0.6 c 44.1±2.4 a 16.8±1.4 a 3.2±0.3 a 251.6±19.4 b 52.4±4.0 b 53.0±3.8 b 11.2±0.2 b M342 CK 183.1±4.8 a 69.6±5.9 b 7.7±0.9 a 5.5±0.7 a 43.7±1.0 a 22.2±0.7a 3.7±0.1 a 286.0±21.5 a 61.7±3.6 a 61.3±5.7 ab 19.5±0.3 a T1 182.5±3.9 a 69.3±4.0 b 7.7±0.4 a 5.7±0.4 a 44.1±1.1 a 22.0±1.4 a 3.7±0.1 a 275.1±19.4 a 60.7±6.8 a 64.2±6.9 a 19.1±2.4 ab T2 178.3±4.9 ab 73.4±4.3 ab 6.9±0.7 a 4.8±0.7 ab 43.4±1.7 a 22.7±1.5 a 3.7±0.2 a 260.5±23.6 ab 58.7±5.3 a 59.7±3.8 ab 18.8±1.2 ab T3 177.9±3.6 ab 79.2±4.7 a 6.8±0.4 a 4.3±0.6 bc 42.6±1.5 a 22.6±2.5 a 3.6±0.2 a 231.9±24.2 bc 53.0±4.0 ab 54.0±4.0 b 16.4±1.5 bc T4 171.7±4.3 b 80.3±5.4 a 5.6±0.4 b 3.4±0.6 c 42.4±1.4 a 21.9±1.6 a 3.6±0.2 a 201.0±15.5 c 46.3±5.2 b 43.2±3.7 c 14.1±0.9 c LDX95-58Ax18Z363 CK 206.4±7.5 a 102.7±8.9 a 8.1±0.5 ab 14.3±1.0 a 40.4±0.6 b 16.3±1.1 a 3.4±0.2 a 352.2±48.8 a 68.9±5.6 ab 81.5±4.0 a 18.4±0.5 a T1 203.4±6.9 ab 101.6±5.5 a 8.2±0.4 ab 13.9±1.5 a 41.5±1.3 ab 15.8±1.7 a 3.3±0.2 a 363.3±37.3 a 73.2±4.6 a 78.6±6.9 a 17.6±1.0 ab T2 203.1±7.1 ab 99.7±7.8 a 8.3±0.8 a 13.5±1.2 a 40.8±1.3 ab 15.2±2.6 a 3.3±0.2 a 361.5±25.1 a 71.9±4.1 a 79.3±7.6 a 15.7±1.4 bc T3 197.0±7.3 ab 104.2±6.0 a 7.4±0.4 bc 10.9±0.7 b 42.7±0.5 a 16.4±2.7 a 3.4±0.1 a 312.6±22.7 ab 63.5±3.3 b 65.3±6.0 b 14.7±1.1 cd T4 191.4±5.1 b 102.9±7.6 a 6.5±0.3 c 7.8±0.6 c 41.2±1.1 ab 16.2±2.2 a 3.3±0.2 a 282.9±22.6 b 54.3±2.9 c 52.7±5.5 c 12.9±1.6 d -
[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议 [J]. 中国油料作物学报, 2014, 36(3):414−421. doi: 10.7505/j.issn.1007-9084.2014.03.020WANG H Z, YIN Y. Analysis and strategy for oil crop industry in China [J]. Chinese Journal of Oil Crop Sciences, 2014, 36(3): 414−421.(in Chinese) doi: 10.7505/j.issn.1007-9084.2014.03.020 [2] KRATO C, PETEMEN J. Gene flow between imidazolinone tolerant and susceptible winter oilseed rape varieties [J]. Weed Research, 2012, 52(2): 187−196. doi: 10.1111/j.1365-3180.2012.00907.x [3] 胡茂龙, 浦惠明, 张洁夫. 我国抗ALS类除草剂油菜种质创制与研究进展 [J]. 中国油料作物学报, 2018, 40(5):679−686. doi: 10.7505/j.issn.1007-9084.2018.05.010HU M L, PU H M, ZHANG J F. Research advances of rapeseed germplasms with ALS-inhibiting herbicides resistance in China [J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 679−686.(in Chinese) doi: 10.7505/j.issn.1007-9084.2018.05.010 [4] 邹月利, 陶波. 磺酰脲类除草剂的降解机制及代谢产物的研究进展 [J]. 农药科学与管理, 2011, 32(10):24−31. doi: 10.3969/j.issn.1002-5480.2011.10.009Zou Y L, Tao B. Research advance on the degradation mechanism and degradation products of sulfonylurea herbicides [J]. Pesticide Science and Administration, 2011, 32(10): 24−31.(in Chinese) doi: 10.3969/j.issn.1002-5480.2011.10.009 [5] 王倩, 崔翠, 叶桑, 等. 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价 [J]. 作物学报, 2018, 44(8):1169−1184.WANG Q, CUI C, YE S, et al. Screening and Comprehensive Evaluation of Germplasm Resources with Tribenuron-methyl Tolerance at Germination Stage in Rapeseed (Brassica napusL.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1169−1184.(in Chinese) [6] 蒋仁棠, 张勇, 路兴涛, 等. 杂草对苯磺隆的抗药性及残留药害对后茬作物的安全性 [J]. 农药, 2008, 47(11):849−850. doi: 10.3969/j.issn.1006-0413.2008.11.026JIANG R T, ZHANG Y, LU X T, et al. Weeds resistance to tribenuron and safety to thenext crops of pesticides residue [J]. Agrochemicals, 2008, 47(11): 849−850.(in Chinese) doi: 10.3969/j.issn.1006-0413.2008.11.026 [7] BINDER S, KNILL T, SCHUSTER J. Branched-chain amino acid metabolism in higher plants [J]. Physiologia Plantarum, 2010, 129(1): 68−78. [8] SHANER D L.Physiological effects of the imidazolinone herbicides[M]. The Imidazolinone Herbicides, Boca Raton: CRC Press, 1991: 129−137. [9] 张卫国. 除草剂苯磺隆对党参幼苗叶片光合指标的影响 [J]. 农业技术与装备, 2018, 341(5):8−10.ZHANG W G. Effects of the herbicide tribenuron on photosynthetic indexes of the seedling leaves of codonopsispilosula [J]. Agricultural Technology & Equipment, 2018, 341(5): 8−10.(in Chinese) [10] 谢飒英, 谢三刚, 宋昱, 等. 除草剂苯磺隆对冬小麦产量指标和叶面积的影响 [J]. 现代农业科技, 2009, 74(17):130. doi: 10.3969/j.issn.1007-5739.2009.17.090XIE S Y, XIE S G, SONG Y, et al. Effect of herbicide tribenuron on yield index and leaf area of winter wheat [J]. Modern Agricultural Science and Technology, 2009, 74(17): 130.(in Chinese) doi: 10.3969/j.issn.1007-5739.2009.17.090 [11] 殷会德, 佘晓云, 胡占丽, 等. 苯磺隆在冬小麦植株、籽粒及土壤中残留量的变化 [J]. 农药, 2017, 56(11):824−827.YIN H D, SHE X Y, HU Z L, et al. The change of the tribenuron-methyl residuesin winter wheat plant, grain and soil [J]. Agrochemicals, 2017, 56(11): 824−827.(in Chinese) [12] HU M L, PU H M, GAO J Q, et al. Inheritance and molecular characterization of resistance to AHAS inhibiting herbicides in rapeseed [J]. Journal of Integrative Agriculture, 2017, 16(11): 2421−2433. doi: 10.1016/S2095-3119(17)61659-9 [13] 张超, 李大雄, 罗莉斯, 等. 甘蓝型油菜双低pol CMS恢复系2350C的选育与应用 [J]. 贵州农业科学, 2014, 42(10):15−17. doi: 10.3969/j.issn.1001-3601.2014.10.005ZHANG C, LI D X, LUO L S, et al. Breeding and application of restorer 2350C with pol CMS and double low in brassica napus [J]. Guizhou Agricultural Sciences, 2014, 42(10): 15−17.(in Chinese) doi: 10.3969/j.issn.1001-3601.2014.10.005 [14] 李杰, 冯跃华, 王旭, 等. 不同地力和施氮水平下水稻叶片SPAD值及产量的分析 [J]. 中国稻米, 2017, 23(1):26−30. doi: 10.3969/j.issn.1006-8082.2017.01.005LI J, FENG Y H, WANG X, et al. Analysis of SPAD value of rice leaf and yield under different soil fertility and nitrogen application [J]. China Rice, 2017, 23(1): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-8082.2017.01.005 [15] 刘艳春, 樊明寿. 应用叶绿素仪SPAD-502进行马铃薯氮素营养诊断的可行性 [J]. 中国马铃薯, 2012, 26(1):45−48. doi: 10.3969/j.issn.1672-3635.2012.01.012LIU Y C, FAN M S. Application feasibility of SPAD-502 in diagnosis of potato nitrogen nutrient status [J]. Chinese Potato Journal, 2012, 26(1): 45−48.(in Chinese) doi: 10.3969/j.issn.1672-3635.2012.01.012 [16] 赵勇, 罗志明, 朱建荣, 等. 基于叶绿素SPAD值分析甘蔗对除草剂反应的差异 [J]. 亚热带农业研究, 2018, 14(3):157−162.ZHAO Y, LUO Z M, ZHU J R, et al. Differences in responses of sugarcanes to herbicides based on chlorophyll SPAD values [J]. Subtropical Agriculture Research, 2018, 14(3): 157−162.(in Chinese) [17] 信晓阳, 曲高平, 张荣, 等. 不同品种油菜对苯磺隆耐药性差异的鉴定 [J]. 西北农业学报, 2014, 23(7):68−74. doi: 10.7606/j.issn.1004-1389.2014.07.012XIN X Y, QU G P, ZHANG R, et al. Identification of the tribenuron-methyl tolerance in different rapeseed genotypes [J]. Acta AgricultureBoreali-OccidentalisSinica, 2014, 23(7): 68−74.(in Chinese) doi: 10.7606/j.issn.1004-1389.2014.07.012 [18] 李新安, 赵华, 李广领, 等. 噻吩磺隆在不同类型土壤中的降解行为 [J]. 农药, 2012, 51(1):55−57. doi: 10.3969/j.issn.1006-0413.2012.01.021LI X A, ZHAO H, LI G L, et al. Degradation behavior Of ThifensuIfuron-methy in the different soils [J]. Agrochemicals, 2012, 51(1): 55−57.(in Chinese) doi: 10.3969/j.issn.1006-0413.2012.01.021 [19] 杜慧平, 杜慧玲. 苯磺隆在土壤中的消解动态和残留测定 [J]. 山西农业科学, 2015, 43(1):50−53. doi: 10.3969/j.issn.1002-2481.2015.01.15DU H P, DU H L. Tribenuron-methly degradation dynamics and residual in soil [J]. Journal of Shanxi Agricultural Sciences, 2015, 43(1): 50−53.(in Chinese) doi: 10.3969/j.issn.1002-2481.2015.01.15 [20] 李广阔, 高海峰, 高永红, 等. 苯磺隆在冬麦田减量施用的试验探讨 [J]. 杂草科学, 2013, 31(4):59−61. doi: 10.3969/j.issn.1003-935X.2013.04.016LI G K, GAO H F, GAO Y H, et al. Experimental study on reduction of tribenuron-methyl dose in winter wheat field in southern xinjiang [J]. Weed Science, 2013, 31(4): 59−61.(in Chinese) doi: 10.3969/j.issn.1003-935X.2013.04.016