Bacterial Diversities in Rhizosphere Soils at Sites of Healthy and Fusarium Wilt Infected Chili Plants
-
摘要:
目的 分析辣椒健康植株和患枯萎病植株根际土壤中细菌群落多样性,为辣椒枯萎病生态防控提供理论依据。 方法 采集漳州3个辣椒种植基地枯萎病典型患病样地的健康植株根际土壤(JK)和患病植株根际土壤(KW),对土样中的细菌群落进行基于Illumina Miseq测序平台的宏基因组高通量测序,明确健康辣椒植株与枯萎病患病植株根际土壤细菌多样性。 结果 患枯萎病植株根际土壤细菌的优质序列比健康植株少14 376条,OTUs少1 239个。在门水平上,健康植株和患病植株根际土壤微生物组成相似,但相对丰度存在差异。在属水平上,健康植株根际的鞘氨醇单孢菌属Sphingomonas相对丰度比患病植株增加了5.05百分点;而金属细菌属Metallibacterium相对丰度比患病植株减少了6.09百分点。部分物种丰度分析表明患病辣椒土壤根际中壤红杆菌属Solirubrobacter、小双孢菌属Microbispora、短链球孢囊菌属Catelliglobosispora和假双头斧形菌属Pseudolabrys等4个属的物种丰度低于健康辣椒。 结论 辣椒患病植株根际土壤中的细菌群落结构发生改变及物种丰度降低是辣椒枯萎病患病的重要特征,提示早期添加优势益生菌是防控辣椒枯萎病的新思路。 Abstract:Objective Diversities of the bacterial community in the rhizosphere soils, where healthy or fusarium wilt (Fusarium oxysporum Schl.) infected chili plants were found, were compared for information to facilitate the disease control. Method Soil samples at sites of healthy (JK) and diseased (KW) chili plants from 3 cultivation extension stations in Zhangzhou, Fujian were collected. The macrogenomic sequences of the specimens were obtained using Illumina Miseq high-throughput platform. Result The high-quality alpha diversity indices on KW was 14376 fewer and the operational taxonomic units 1239 less than those of JK. The microbial phyla found in JK and KW were similar on composition but significantly differed on relative abundance. Among the various genera identified, Sphingomonas in JK was 5.05% higher than in KW on relative abundance, while Metallibacterium 6.09% lower. The analysis on part of the species indicated that the abundance of 4 genera, such as Solirubrobacter, Microbispora, Catelliglobosispora and Pseudolabrys, were lower in KW than JK. Conclusion The differentiations between JK and KW on the composition and abundance of their microbial communities could likely affect the occurrence of the wilt on the chili plants grown on the sites. Hence, measures for remedy, such as addition of dominant probiotics in the soil at early stage of plant growth, might be a plausible new approach to control the wilt disease on chili plants in the field. -
表 1 辣椒健康植株和患病植株根际土壤细菌α多样性指数
Table 1. Alpha diversity indices of bacteria in rhizosphere soils at JK and KW
样本名称
Sample ID优质序列/条
Seq numOTU/条
OTU num香农指数
Shannon indexACE 指数
ACE indexChao 指数
Chao1 index辛普森指数
Simpson index覆盖率
Coverage健康 JK 45 115 7 164 6.48 4 898.99 4 623.74 6.9e-03 0.97 枯萎 KW 30 739 5 925 5.90 3 586.81 3 406.71 0.02 0.97 P 值 P-vaule 0.045 0.005 0.001 0.003 0.003 0.817 − 显著性差异分析
Analysis of significant differences* ** ** ** ** 注:*:差异显著;**:差异极显著。
Note: *: exsting differences; **: exsting significant differences.表 2 健康辣椒和患病辣椒根际土壤细菌的种系分类
Table 2. Phylogenetic classifications of bacteria in rhizosphere soils at JK and KW
种系分类
Classification门
Phylum纲
Class目
Order科
Family属
Genus健康 JK 26 56 76 165 435 枯萎 KW 23 54 76 164 427 表 3 健康辣椒和患病辣椒根际土壤细菌在不同分类阶元的细菌丰度
Table 3. Taxonomic compositions of bacterial communities in rhizosphere soils at JK and KW
分类阶元
Taxonomic category细菌丰度 Bacterial abundance/% 分类阶元
Taxonomic category细菌丰度 Bacterial abundance/% 健康 JK 枯萎 KW 健康 JK 枯萎 KW 变形菌门 Proteobacteria 49.86 52.25 GP13属GP13 1.62 1.50 α-变形菌纲 Alphaproteobacteria 28.66 18.58 GP14 属 GP14 0.05 0.62 鞘氨醇单胞菌属 Sphingomonas 10.59 5.54 GP16 属 GP16 0.77 0.39 产卟啉杆菌属 Porphyrobacter 0.87 0.46 未被分类的细菌纲 unclassified_Class 0.76 0.44 德沃斯氏菌属 Devosia 0.57 0.54 未被分类的细菌属 unclassified_Genus 1.86 2.32 粘着箭菌属 Ensifer 0.52 0.69 放线菌门 Actinobacteria 7.39 7.76 乳酸杆菌属 Lacibacterium 1.77 0.76 放线菌纲 Actinobacteria 7.30 7.69 γ-变形菌纲 Gammaproteobacteria 15.33 29.04 链霉菌属 Streptomyces 0.65 0.58 续上表 分类阶元
Taxonomic category细菌丰度 Bacterial abundance/% 分类阶元
Taxonomic category细菌丰度 Bacterial abundance/% 健康 JK 枯萎 KW 健康 JK 枯萎 KW 产黄杆菌属 Rhodanobacter 3.72 7.28 Jatrophihabitans 属 Jatrophihabitans 0.19 0.64 金属细菌属 Metallibacterium 1.85 7.94 Gaiella 属 Gaiella 1.88 1.45 藤黄单胞菌属 Luteimonas 1.28 0.75 未被分类的细菌纲 unclassified_Class 0.09 0.07 戴氏菌属 Dyella 1.27 1.15 未被分类的细菌属 unclassified_Genus 4.67 5.09 藤黄色杆菌属 Luteibacter 0.18 1.25 芽单胞菌门 Gemmatimonadetes 5.24 3.05 独岛氏菌属 Dokdonella 0.67 0.15 芽单胞菌纲 Gemmatimonadetes 5.24 3.05 Povalibacter 属 Povalibacter 0.49 0.76 芽单胞菌属 Gemmatimonas 5.24 3.05 假单胞菌属 Pseudomonas 1.61 1.63 未被分类的细菌纲 unclassified_Class 0 0 β-变形菌纲 Betaproteobacteria 4.35 3.37 未被分类的细菌属 unclassified_Genus 0 0 δ-变形菌纲 Deltaproteobacteria 1.44 1.19 拟杆菌门 Bacteroidetes 5.04 6.85 未被分类的细菌纲 unclassified_Class 0.08 0.07 鞘脂杆菌纲 Sphingobacteriia 3.65 3.57 未被分类的细菌属 unclassified_Genus 24.47 23.35 噬纤维菌纲 Cytophagia 0.91 0.90 酸杆菌门 Acidobacteria 14.17 12.50 噬纤维菌属 Cytophaga 0.02 0.01 酸杆菌纲 Acidobacteria 13.41 12.06 黄杆菌纲 Flavobacteriia 0.41 2.20 GP1 属 GP1 2.21 1.41 黄杆菌属 Flavobacterium 0.09 0.04 GP2 属 GP2 3.25 3.16 Arenibacter 属 Arenibacter 0.15 0.84 GP3 属 GP3 1.40 0.73 未被分类的细菌纲 unclassified_Class 0.07 0.18 Aridibacter 属 Aridibacter 0.69 0.57 未被分类的细菌属 unclassified_Genus 4.78 5.96 GP6 属 GP6 2.32 1.80 -
[1] 孙继民, 邹学校, 罗尊长, 等. 辣椒连作研究进展 [J]. 辣椒杂志, 2011, 9(2):1−7. doi: 10.3969/j.issn.1672-4542.2011.02.001SUN J M, ZOU X X, LUO Z C, et al. Research progress in continuous cropping of hot pepper [J]. Journal of China Capsicum, 2011, 9(2): 1−7.(in Chinese) doi: 10.3969/j.issn.1672-4542.2011.02.001 [2] 黄素芳, 朱育菁, 肖荣凤, 等. 辣椒枯萎病原菌分离鉴定及其在植株体内的分布 [J]. 厦门大学学报(自然科学版), 2004, 43(S1):71−73.HUANG S F, ZHU Y J, XIAO R F, et al. Identification of capsicum wilt pathogen and its distribution inside the plants [J]. Journal of Xiamen University (Natural Science), 2004, 43(S1): 71−73.(in Chinese) [3] RIME D, NAZARET S, GOURBIERE F, et al. Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane [J]. Phytopathology, 2003, 93(11): 1437−1444. [4] PEREZ-PIQUERES A, EDEL-HERMANN V, ALABOUVETTE C, et al. Response of soil microbial communities to compost amendments [J]. Soil Biology and Biochemistry, 2006, 38(3): 460−470. [5] 邓晓, 李勤奋, 武春媛, 等. 健康香蕉(Musa paradisiaca)植株与枯萎病患病植株根区土壤细菌多样性的比较研究 [J]. 生态环境学报, 2015, 24(3):402−408.Deng X, Li Q F, Wu C Y, et al. Comparison of soil bacterial genetic diversity in root zone of banana (Musa paradisiaca) infected with fusarium wilt and non-infected plant [J]. Ecology and Environmental Sciences, 2015, 24(3): 402−408.(in Chinese) [6] LEON-KLOOSTERZIEL K M, VERHAGEN B W, KEURENTJES J J, et al. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle [J]. Plant Molecular Biology, 2005, 57(5): 731−748. doi: 10.1007/s11103-005-3097-y [7] REP M, DEKKER H L, VOSSEN J H, et al. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato [J]. Plant Physiology, 2002, 130(2): 904−917. doi: 10.1104/pp.007427 [8] TJAMOS E C, TSITSIGIANNIS D I, TJAMOS S E, et al. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts [J]. European Journal of Plant Pathology, 2004, 110(1): 35−44. doi: 10.1023/B:EJPP.0000010132.91241.cb [9] 燕嗣皇, 陆德清, 杨雨环. 木霉防治辣椒枯萎病应用技术研究 [J]. 贵州农业科学, 1999, 27(5):1−4. doi: 10.3969/j.issn.1001-3601.1999.05.001YAN S H, LU D Q, YANG Y H. Effects of Trichodelma harzianum on control of hot pepper wilt [J]. Guizhou Agricultural Sciences, 1999, 27(5): 1−4.(in Chinese) doi: 10.3969/j.issn.1001-3601.1999.05.001 [10] 杨卫娟, 刘长远, 马晓飞, 等. 辣椒枯萎病生防菌株的筛选与鉴定 [J]. 湖北农业科学, 2012, 51(9):1791−1795. doi: 10.3969/j.issn.0439-8114.2012.09.019YANG W J, LIU C Y, MA X F, et al. Sparation and inentification of microbe against Fusarium oxysporum [J]. Hubei Agricultural Sciences, 2012, 51(9): 1791−1795.(in Chinese) doi: 10.3969/j.issn.0439-8114.2012.09.019 [11] 郑玉艳. 苦参对辣椒枯萎病的抑菌活性 [J]. 安徽农业科学, 2011, 39(23):14170−14171. doi: 10.3969/j.issn.0517-6611.2011.23.105ZHENG Y Y. Antifungal activity of sophora flavescens extracts against capsicum blight (Fusarium oxysporum) [J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14170−14171.(in Chinese) doi: 10.3969/j.issn.0517-6611.2011.23.105 [12] 周涛, 罗路云, 陈红松, 等. 辣椒疫病罹病植株根际土壤细菌群落多样性分析 [J]. 南方农业学报, 2017, 48(6):1014−1018. doi: 10.3969/j.issn.2095-1191.2017.06.12ZHOU T, LUO L Y, CHEN H S, et al. Comparison on bacterial community diversity in rhizosphere soil of peppers with phytophthora blight [J]. Journal of Southern Agriculture, 2017, 48(6): 1014−1018.(in Chinese) doi: 10.3969/j.issn.2095-1191.2017.06.12 [13] 蔡艳, 薛泉宏, 陈占全, 等. 青海省保护地辣椒根际土壤和根麦放线菌研究 [J]. 应用与环境生物学报, 2003, 9(1):92−96.CAI Y, XUE Q H, CHEN Z Q, et al. Actinomycetes in chilli rhizosphere soil and on surface of chilli root from protectorate in Qinghai, China [J]. Chin J Appl Environ Biol, 2003, 9(1): 92−96.(in Chinese) [14] 徐强, 程智慧, 孟焕文, 等. 玉米线辣椒套作对线辣椒根际、非根际土壤微生物、酶活性和土壤养分的影响 [J]. 干旱地区农业研究, 2007, 25(3):94−99. doi: 10.3321/j.issn:1000-7601.2007.03.020XU Q, CHENG Z H, MENG H W, et al. Effect of the capsicum and maize intercropping on soil microbe number, soil enzyme activity and soil nutrient content at the capsicum rhizosphere and non-rhizosphere zones [J]. Agricultural Research in the Arid Areas, 2007, 25(3): 94−99.(in Chinese) doi: 10.3321/j.issn:1000-7601.2007.03.020 [15] 徐强, 刘艳君, 陶鸿. 间套作玉米对线辣椒根际土壤微生物生态特征的影响 [J]. 中国生态农业学报, 2013, 21(9):1078−1087.XU Q, LIU Y J, TAO H. Effects of relay intercropping maize on rhizosphere soil microbial ecological characteristics in capsicum fields [J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1078−1087.(in Chinese) [16] 赵玲, 欧阳立明, 陆小辰. 不同基质配方的有机肥对连作辣椒的生长及根际土壤微生物多样性的影响 [J]. 华中农业大学学报, 2013, 32(2):72−77. doi: 10.3969/j.issn.1000-2421.2013.02.013ZHAO L, OU-YANG L M, LU X C. Effects of different organic fertilizers on rhizospheric microbial diversity and growth of peppers in continuous cropping soil [J]. Journal of Huazhong Agricultural University, 2013, 32(2): 72−77.(in Chinese) doi: 10.3969/j.issn.1000-2421.2013.02.013 [17] 张学利, 杨树军, 张百习, 等. 不同林龄樟子松根际与非根际土壤的对比 [J]. 福建林学院学报, 2005, 25(1):80−84. doi: 10.3969/j.issn.1001-389X.2005.01.019ZHANG X L, YANG S J, ZHANG B X, et al. Comparative research on rhizosphere soil and non-rhizosphere soil properties in different stand age of Pinus sylvestris var. mongolica sand-fixation forest [J]. Journal of Fujian College of Forestry, 2005, 25(1): 80−84.(in Chinese) doi: 10.3969/j.issn.1001-389X.2005.01.019 [18] ROSENZWEIG N, TIEDJE J M, QUENSEN J F, et al. Microbial communities associated with potato common scabsuppressive soil determined by pyrosequencing analyses [J]. Plant Disease, 2012, 96(5): 718−725. doi: 10.1094/PDIS-07-11-0571 [19] FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103 [20] FIERER N, MCCAIN C M, MEIR P, et al. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 2011, 92(4): 797−804. doi: 10.1890/10-1170.1 [21] SHEN C C, XIONG J B, ZHANG H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biology & Biochemistry, 2013, 57: 204−211. [22] WANG J J, SOININEN J, ZHANG Y, et al. Contrasting patterns in elevational diversity between microorganisms and macroorganisms [J]. Journal of Biogeography, 2011, 38(3): 595−603. doi: 10.1111/j.1365-2699.2010.02423.x [23] LI H, SU J Q, YANG X R, et al. Distinct rhizosphere effect on active and total bacterial communities in paddy soils [J]. Science of the Total Environment, 2019, 649: 422−430. [24] FAN D, SCHWINGHAMER T, SMITH D L. Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada [J]. Systematic and Applied Microbiology, 2018, 41(6):629-640. [25] ANGELO-PICARD C, FAURE D, PENOT I, et al. Diversity of N-acyl homoserine lactone-producing and degrading bacteria in soil and tobacco rhizosphere [J]. Environmental Microbiology, 2005, 7(11): 1796−1808. doi: 10.1111/j.1462-2920.2005.00886.x [26] 靳晓扬, 侯鹏飞, 张肖晗, 等. 细菌信号分子N-酰基高丝氨酸内酯调控植物抗病反应的研究进展 [J]. 生物技术通报, 2016, 32(11):47−51.JIN X Y, HOU P F, ZHANG X H, et al. Advances on regulation of plant disease resistance by N-acyl-homoserine lactones of a bacterial signal molecule [J]. Biotechnology Bulletin, 2016, 32(11): 47−51.(in Chinese) [27] 胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展 [J]. 应用与环境生物学, 2007, 13(3):431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030HU J, HE X H, LI D P, et al. Progress in Research of Sphingomonas [J]. Chin J Appl Environ Biol, 2007, 13(3): 431−437.(in Chinese) doi: 10.3321/j.issn:1006-687X.2007.03.030 [28] VASILEIADIS S, PUGLISI E, PAPADOPOULOU E S, et al. Blame it on the metabolite: 3,5-dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms [J]. Applied and Environmental Microbiology, 2018, 84(22): 1−16. [29] GIRAO M, RIBEIRO I, RIBEIRO T, et al. Actinobacteria isolated from laminaria ochroleuca: A Source of new bioactive compounds [J]. Front Microbiol, 2019, 10: 683. doi: 10.3389/fmicb.2019.00683 [30] MA M C, ZHOU J, ONGENA M, et al. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of chinese mollisols [J]. AMB Express, 2018, 8(1): 20−31. doi: 10.1186/s13568-018-0549-8 [31] NGUYEN N L, TRAN B T, PHAM H S, et al. Illumina miseq-based sequencing analysis of bacterial community in vietnamese ginseng cultivated soil in the Ngoc linh mountain, vietnam [J]. TiEu Ban Tai Nguyen Sinh Vat, 2016: 1274−1282.