• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种植模式七叶一枝花土壤芽胞杆菌多样性研究

苏海兰 郑梅霞 朱育菁 单寄坪

苏海兰, 郑梅霞, 朱育菁, 单寄坪. 不同种植模式七叶一枝花土壤芽胞杆菌多样性研究[J]. 福建农业学报, 2019, 34(8): 974-984. doi: 10.19303/j.issn.1008-0384.2019.08.016
引用本文: 苏海兰, 郑梅霞, 朱育菁, 单寄坪. 不同种植模式七叶一枝花土壤芽胞杆菌多样性研究[J]. 福建农业学报, 2019, 34(8): 974-984. doi: 10.19303/j.issn.1008-0384.2019.08.016
SU Hai-lan, ZHENG Mei-xia, ZHU Yu-jing, SHAN Ji-ping. Bacillus spp. in Soils at Paris polyphylla Cultivation Fields[J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 974-984. doi: 10.19303/j.issn.1008-0384.2019.08.016
Citation: SU Hai-lan, ZHENG Mei-xia, ZHU Yu-jing, SHAN Ji-ping. Bacillus spp. in Soils at Paris polyphylla Cultivation Fields[J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 974-984. doi: 10.19303/j.issn.1008-0384.2019.08.016

不同种植模式七叶一枝花土壤芽胞杆菌多样性研究

doi: 10.19303/j.issn.1008-0384.2019.08.016
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2019R11020019-9

福建省财政专项——福建省农业科学院创新团队建设项目 STIT2017-2-8

福建省农业科学院科技服务团队项目 kjfw20

详细信息
    作者简介:

    苏海兰(1980-), 女, 硕士, 农艺师, 研究方向:药用植物资源利用与栽培研究(E-mail:363801575@qq.com)

    通讯作者:

    朱育菁(1972-), 女, 博士, 研究员, 研究方向:农业生物资源与生物防治的研究(E-mail:zyjingfz@163.com)

  • 中图分类号: Q938

Bacillus spp. in Soils at Paris polyphylla Cultivation Fields

  • 摘要:   目的  分析水稻田、山垅和林下3种种植模式七叶一枝花土壤中芽胞杆菌资源多样性,为七叶一枝花的栽培提供理论基础。  方法  采用五点采样法,分别采集水稻田、山垅田与林下种植模式七叶一枝花根际土壤与非根际土壤样本6份,采用涂布法分离芽胞杆菌,采用16S rRNA基因同源性将其鉴定。  结果  一共分离获得了87株芽胞杆菌,13个属、35个种,分别属于芽胞杆菌属Bacillus的16个种、赖氨酸芽胞杆菌属Lysinibacillus、类芽胞杆菌属Paenibacillus和假单胞菌属Pseudomonas的各3个种、Bhargavaea、短杆菌属BrevibacteriumBurkholderia、短芽胞杆菌属Brevibacillus、代夫特菌属DelftiaPaenarthrobacter、节杆菌属Arthrobacter、伯克氏菌属泛菌属Pantoea、假单胞菌属Pseudomonas的各1个种。根据分离频度分析得知,七叶一枝花土壤中的芽胞杆菌优势菌群为图瓦永芽胞杆菌B.toyonensis和假蕈状芽胞杆菌B.pseudomycoides。其中,水稻田种植模式土壤中的芽胞杆菌的数量最多,且Margalef、Shannon-Wiener、Pielou和Simpson多样性指数都最高。七叶一枝花根际土壤中的芽胞杆菌数量均大于非根际土壤。  结论  水稻田蕴藏着丰富的芽胞杆菌种类和数量,多样性高,在七叶一枝花的种植中具有很好的应用前景。
  • 图  1  芽胞杆菌的菌落形态

    Figure  1.  Colony morphology of Bacillus spp.

    图  2  基于16S rRNA基因序列的南平七叶一枝花不同种植模式土壤中芽胞杆菌系统发育树

    注:数字表示各节点自发展支持率数值(>50)。

    Figure  2.  Phylogenetic tree of Bacillus spp. isolated from soil at P. polyphylla cultivation fields in Nanping based on 16S rRNA gene sequences using neighbor-joining method

    Note:Data at branching points indicate bootstrap values are greater than 50%.

    图  3  不同种植模式七叶一枝花土壤芽胞杆菌的多样性指数

    注:Ⅰ为水稻田,Ⅱ为山垅田,Ⅲ为林下。

    Figure  3.  Diversity indices of Bacilus spp. isolated from soil at paddy field (SDT), mountain ridge (SLT) and understory (LX) growing P. polyphylla

    Note:Ⅰ.SDT, Ⅱ.SLT, Ⅲ.LX.

    表  1  从七叶一枝花不同种植模式土壤中分离得到的细菌的种类

    Table  1.   Bacillus spp. isolated from soil at P. polyphylla cultivation fields

    分离来源
    Reource
    类群
    Group
    代表菌株
    Strains
    最相近菌株
    Closest match
    相似性
    Sequence identify/%
    水稻田非根际土(SDF)
    Irrhizosphere soil in paddy field
    芽胞杆菌属 Bacillus FJAT-49195 高地芽胞杆菌 Bacillus altitudinis 100.00
    FJAT-49204 高地芽胞杆菌 Bacillus altitudinis 100.00
    FJAT-49198 钻特省芽胞杆菌 Bacillus drentensis 99.64
    FJAT-49200 太平洋芽胞杆菌 Bacillus pacificus 100.00
    FJAT-49201 阿氏芽胞杆菌 Bacillus aryabhattai 100.00
    FJAT-49211 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49206 阿氏芽胞杆菌 Bacillus aryabhattai 100.00
    FJAT-49207 扁平芽胞杆菌 Bacillus depressus 99.15
    FJAT-49196 假蕈状芽胞杆菌 Bacillus pseudomycoides 98.87
    FJAT-49208 Bacillus pseudomycoides 100.00
    FJAT-49209 假蕈状芽胞杆菌 Bacillus pseudomycoides 97.95
    赖氨酸芽胞杆菌属 Lysinibacillus FJAT-49203 Lysinibacillus fusiformis 99.72
    FJAT-49202 Lysinibacillus fusiformis 99.72
    FJAT-49199 Lysinibacillus mangiferihumi 99.93
    短芽胞杆菌 Brevibacillus FJAT-49197 耐寒短杆菌 Brevibacterium frigoritolerans 99.79
    Paenarthrobacter FJAT-49205 Paenarthrobacter ilicis 99.57
    类芽胞杆菌属 Paenibacillus FJAT-49210 Paenibacillus silvae 99.50
    水稻田根际土
    (SDG)Rhizosphere soil in paddy field
    芽胞杆菌属 Bacillus FJAT-49212 图瓦永芽胞杆菌 Bacillus toyonensis 99.79
    FJAT-49218 图瓦永芽胞杆菌 Bacillus toyonensis 100.00
    FJAT-49223 图瓦永芽胞杆菌 Bacillus toyonensis 100.00
    FJAT-49225 Bacillus pseudomycoides 100.00
    FJAT-49219 假蕈状芽胞杆菌 Bacillus pseudomycoides 99.79
    FJAT-49214 阿氏芽胞杆菌 Bacillus aryabhattai 100.00
    FJAT-49215 高地芽胞杆菌 Bacillus altitudinis 100.00
    FJAT-49216 Bacillus albus 99.65
    FJAT-49213 泰门芽胞杆菌 Bacillus timonensis 98.94
    FJAT-49224 钻特省芽胞杆菌 Bacillus drentensis 99.49
    FJAT-49220 Bacillus mobilis 99.79
    FJAT-49227 Bacillus mobilis 100.00
    FJAT-49228 科研中心芽胞杆菌 Bacillus cecembensis 97.19
    FJAT-49229 扁平芽胞杆菌 Bacillus depressus 98.65
    类芽胞杆菌属 Paenibacillus FJAT-49222 乐金类芽胞杆菌 Paenibacillus elgii 99.64
    FJAT-49226 蜂房类芽胞杆菌 Paenibacillus alvei 99.09
    赖氨酸芽胞杆菌属 Lysinibacillus FJAT-49217 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 99.72
    FJAT-49221 纺锤形赖氨酸芽胞杆菌 Lysinibacillus fusiformis 100.00
    林下非根际土
    (LXF) Irrhizosphere soil in understory
    芽胞杆菌属 Bacillus FJAT-49230 Bacillus proteolyticus 99.93
    FJAT-49238 Bacillus proteolyticus 99.86
    FJAT-49237 图瓦永芽胞杆菌 Bacillus toyonensis 100.00
    FJAT-49240 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49231 Bacillus paramycoides 100.00
    代夫特菌 Delftia FJAT-49233 湖生代夫特菌 Delftia lacustris 99.86
    赖氨酸芽胞杆菌属 Lysinibacillus FJAT-49232 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 97.96
    FJAT-49234 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 99.58
    FJAT-49235 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 98.85
    类芽胞杆菌属 Paenibacillus FJAT-49236 蜂房类芽胞杆菌 Paenibacillus alvei 99.02
    短芽胞杆菌 Brevibacillus FJAT-49239 侧胞短芽胞杆菌 Brevibacillus laterosporus 99.57
    伯克霍尔德菌 Burkholderia FJAT-49241 稳定伯克霍尔德菌 Burkholderia stabilis 99.79
    林下根际土(LXG)
    Rhizosphere soil in understory
    芽胞杆菌属 Bacillus FJAT-49242 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49243 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49245 Bacillus paramycoides 100.00
    FJAT-49246 Bacillus paramycoides 100.00
    FJAT-49247 假蕈状芽胞杆菌 Bacillus pseudomycoides 99.86
    赖氨酸芽胞杆菌属 Lysinibacillus FJAT-49248 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 99.58
    FJAT-49252 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 99.58
    FJAT-49244 解木糖赖氨酸芽胞杆菌 Lysinibacillus xylanilyticus 99.58
    假单胞菌 Pseudomonas FJAT-49251 扁平假单胞菌 Pseudomonas koreensis 99.57
    FJAT-49249 霍氏假单胞菌 99.43
    Bhargavaea FJAT-49250 Bhargavaea ginsengi 99.72
    山垅非根际土(SLF)
    Irrhizosphere soil in mountain ridge
    芽胞杆菌属 Bacillus FJAT-49253 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49263 图瓦永芽胞杆菌 Bacillus toyonensis 99.93
    FJAT-49264 图瓦永芽胞杆菌 Bacillus toyonensis 100.00
    FJAT-49262 假蕈状芽胞杆菌 Bacillus pseudomycoides 98.87
    FJAT-49254 假蕈状芽胞杆菌 Bacillus pseudomycoides 100.00
    FJAT-49256 赛门枝芽胞杆菌 Bacillus siamensis 99.65
    FJAT-49257 阿氏芽胞杆菌 Bacillus aryabhattai 100.00
    FJAT-49255 Bacillus albus 100.00
    FJAT-49259 维德曼芽胞杆菌 Bacillus wiedmannii 100.00
    假单胞菌 Pseudomonas FJAT-49258 Pseudomonas granadensis 99.43
    FJAT-49260 Pseudomonas granadensis 99.43
    泛菌属 Pantoea FJAT-49261 Pantoea rodasii 98.72
    山垅非根际土(SLF)
    Rhizosphere soil in mountain ridge
    芽胞杆菌属 Bacillus FJAT-49265 Bacillus proteolyticus 99.93
    FJAT-49266 Bacillus albus 100.00
    FJAT-49269 图瓦永芽胞杆菌 Bacillus toyonensis 99.86
    FJAT-49270 维德曼芽胞杆菌 Bacillus wiedmannii 100.00
    FJAT-49271 高地芽胞杆菌 Bacillus altitudinis 100.00
    FJAT-49273 阿氏芽胞杆菌 Bacillus aryabhattai 100.00
    FJAT-49277 吉氏芽胞杆菌 Bacillus gibsonii 99.86
    FJAT-49280 扁平芽胞杆菌 Bacillus depressus 99.23
    FJAT-49281 扁平芽胞杆菌 Bacillus depressus 99.93
    FJAT-49267 假蕈状芽胞杆菌 Bacillus pseudomycoides 99.93
    假单胞菌 Pseudomonas FJAT-49272 基尔假单胞菌 Pseudomonas koreensis 99.64
    FJAT-49268 基尔假单胞菌 Pseudomonas koreensis 99.64
    FJAT-49275 霍氏假单胞菌 Pseudomonas rhodesiae 99.43
    赖氨酸芽胞杆菌属 Lysinibacillus FJAT-49274 纺锤形赖氨酸芽胞杆菌 Lysinibacillus fusiformis 99.79
    代夫特菌属 Delftia FJAT-49278 食酸丛毛单胞菌 Delftia acidovorans 99.93
    绿芽胞杆菌 Viridibacillus FJAT-49279 田地绿芽胞杆菌 Viridibacillus arvi 100.00
    节杆菌 Arthrobacter FJAT-49276 Arthrobacter bambusae 99.35
    下载: 导出CSV

    表  2  不同种植模式七叶一枝花土壤芽胞杆菌的分离频度(%)和平均数量(×105 cfu·g-1)

    Table  2.   Appearance frequency (%) and average quantity (×105cfu·g-1) of Bacillus spp. isolated from soil specimens

    芽胞杆菌种类
    Bacillus-like species
    SDG SDF SLG SLF LXG LXF 总体 Total
    分离频度 数量 分离频度 数量 分离频度 数量 分离频度 数量 分离频度 数量 分离频度 数量 分离频度 数量
    Bacillus altitudinis 50 18 50 9 50 3 0 0 0 0 0 0 50.00 30
    Bacillus pseudomycoides 50 45 50 16 50 4 50 20 50 7 0 0 83.33 92
    Brevibacterium frigoritolerans 0 0 50 4 0 0 0 0 0 0 0 0 16.67 4
    Bacillus drentensis 50 8 50 3 0 0 0 0 0 0 0 0 33.33 11
    Lysinibacillus mangiferihumi 0 0 50 2 0 0 0 0 0 0 0 0 16.67 2
    Bacillus pacificus 0 0 50 15 0 0 0 0 0 0 0 0 16.67 15
    Bacillus aryabhattai 50 32 50 17 50 10 50 6 0 0 0 0 66.67 65
    Lysinibacillus fusiformis 50 1 50 11 50 4 0 0 0 0 0 0 50.00 16
    Paenarthrobacter ilicis 0 0 50 1 0 0 0 0 0 0 0 0 16.67 1
    Bacillus depressus 50 4 50 4 50 10 0 0 0 0 0 0 50.00 18
    Paenibacillus silvae 0 0 50 3 0 0 0 0 0 0 0 0 16.67 3
    Bacillus toyonensis 50 24 50 7 50 15 50 7 50 92 50 23 100.00 168
    Bacillus timonensis 50 49 0 0 0 0 0 0 0 0 0 0 16.67 49
    Bacillus albus 50 22 0 0 50 4 50 11 0 0 0 0 50.00 37
    Lysinibacillus xylanilyticus 50 13 0 0 0 0 0 0 50 44 50 17 50.00 74
    Bacillus mobilis 50 15 0 0 0 0 0 0 0 0 0 0 16.67 15
    Paenibacillus elgii 50 4 0 0 0 0 0 0 0 0 0 0 16.67 4
    Paenibacillus alvei 50 1 0 0 0 0 0 0 0 0 50 2 33.33 3
    Bacillus cecembensis 50 36 0 0 0 0 0 0 0 0 0 0 16.67 36
    Bacillus proteolyticus 0 0 0 0 50 1 0 0 0 0 50 31 33.33 32
    Bacillus paramycoides 0 0 0 0 0 0 0 0 50 11 50 3 33.33 14
    Delftia lacustris 0 0 0 0 0 0 0 0 0 0 50 1 16.67 1
    Brevibacillus laterosporus 0 0 0 0 0 0 0 0 0 0 50 1 16.67 1
    Burkholderia stabilis 0 0 0 0 0 0 0 0 0 0 50 11 16.67 11
    Pseudomonas rhodesiae 0 0 0 0 50 14 0 0 50 52 0 0 33.33 66
    Bhargavaea ginsengi 0 0 0 0 0 0 0 0 50 29 0 0 16.67 29
    Pseudomonas koreensis 0 0 0 0 50 10 0 0 50 1 0 0 33.33 11
    Bacillus siamensis 0 0 0 0 0 0 50 7 0 0 0 0 16.67 7
    Pseudomonas granadensis 0 0 0 0 0 0 50 12 0 0 0 0 16.67 12
    Bacillus wiedmannii 0 0 0 0 50 3 50 3 0 0 0 0 33.33 6
    Pantoea rodasii 0 0 0 0 0 0 50 8 0 0 0 0 16.67 8
    Arthrobacter bambusae 0 0 0 0 50 150 0 0 0 0 0 0 16.67 150
    Bacillus gibsonii 0 0 0 0 50 1 0 0 0 0 0 0 16.67 1
    Delftia acidovorans 0 0 0 0 50 32 0 0 0 0 0 0 16.67 32
    Viridibacillus arvi 0 0 0 0 50 2 0 0 0 0 0 0 16.67 2
    总计 Tatal - 272 - 92 - 263 - 74 - 236 - 89 - 1026
    注:分离频度 Separation frequency,数量 Amount。SDF:水稻田七叶一枝花非根际 Irrhizosphere soil of Paris polyphylla in paddy field; SDG:水稻田七叶一枝花根际土 Rhizosphere soil of P. polyphylla in paddy field; LXF:林下七叶一枝花非根际土 Irrhizosphere soil of P. polyphylla in understory; LXG:林下七叶一枝花根际土 Rhizosphere soil of P. polyphylla in understory; SLF:山垅七叶一枝花非根际土 Irrhizosphere soil of P. polyphylla in mountain ridge; SLG:山垅七叶一枝花根际土 Rhizosphere soil of P. polyphylla in mountain ridge.
    下载: 导出CSV
  • [1] 陈倩倩, 刘波, 刘国红, 等.华重楼根际土芽胞杆菌多样性研究[J].热带农业科学, 2015, 35(12):103-107. doi: 10.3969/j.issn.1009-2196.2015.12.020

    CHEN Q Q, LIU B, LIU G H, et al. Diversity of culturable Bacillus species from Paris Linnaeus rhizosphere soil[J]. Chinese Journal of Tropical Agriculture, 2015, 35(12):103-107.(in Chinese) doi: 10.3969/j.issn.1009-2196.2015.12.020
    [2] 梁娟, 郭泽宇, 叶漪.不同土壤水分条件对七叶一枝花光合特性及有效成分皂苷含量的影响[J].植物生理学报, 2014, 50(1):56-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201401008

    LIANG J, GUO Z Y, YE Y.Effects of different soil moisture conditions on photosynthetic characteristics and effective content of saponin of Paris polyphylla[J]. Plant Physiology Communications, 2014, 50(1):56-60.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201401008
    [3] 张静, 肖国生, 周浓, 等.三峡库区栽培重楼属药用植物根际土壤微生物数量和酶活性的变化[J].中国中医药信息杂志, 2016, 23(10):95-99. http://d.old.wanfangdata.com.cn/Periodical/zgzyyxxzz201610024

    ZHANG J, XIAO G S, ZHOU N, et al. Variation of rhizospheric microorganisms and soil enzyme activity of paridis rhizoma cultivated in three gorges reservoir Region[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2014, 50(1):56-60.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgzyyxxzz201610024
    [4] 欧洪, 郭冬琴, 林俊杰, 等. AM真菌对滇重楼根际土壤微生物数量及酶活性的影响[J].中药材, 2016, 39(5):948-955. http://d.old.wanfangdata.com.cn/Periodical/zyc201605002

    OU H, GUO D Q, LIN J J, et al. Effects of different AM fungi on quantity and enzyme activity of rhizosphere soil microorganism of Paris polyphylla var. yunnanensis[J]. Journal of Chinese Medicinal Materials, 2016, 39(5):948-955.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zyc201605002
    [5] 张千和, 周立香, 郭荻.中药材根际和非根际土壤酶和微生物特征[J].西北农业学报, 2014, 23(12):189-196. doi: 10.7606/j.issn.1004-1389.2014.12.029

    ZHANG Q H, ZHOU L X, GUO D. Research on soil enzymes and microflora in rhizosphere and non-rhizosphere of traditional chinese medicinal herbs[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(12):189-196.(in Chinese) doi: 10.7606/j.issn.1004-1389.2014.12.029
    [6] 崔莹, 黄惠琴, 刘敏, 等.八门湾红树林土壤芽胞杆菌分离与多样性分析[J].微生物学通报, 2014, 41(2):229-235. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201402003

    CUI Y, HUANG H Q, LIU M, et al. Isolation and diversity analysis of Bacillus-like species from Bamen bay mangrove soil[J]. Microbiology China, 2014, 41(2):229-235.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wswxtb201402003
    [7] 周秋平, 黄惠琴, 崔莹, 等.尖峰岭热带雨林土壤中可培养芽胞杆菌多样性分析[J].广东农业科学, 2015, 42(2):59-63. doi: 10.3969/j.issn.1004-874X.2015.02.012

    ZHOU Q P, HUANG H Q, CUI Y, et al. Diversity analysis of culturable Bacillus-like species form Jianfengling tropical rain forest soil[J]. Guangdong Agricultural Sciences, 2015, 42(2):59-63.(in Chinese) doi: 10.3969/j.issn.1004-874X.2015.02.012
    [8] 葛慈斌, 郑榕, 刘波, 等.武夷山自然保护区土壤可培养芽胞杆菌的物种多样性及分布[J].生物多样性, 2016, 24(10):1164-1176. doi: 10.17520/biods.2016085

    GE C B, ZHENG R, LIU B, et al. Diversity and distribution of cultivable Bacillus-like species in soils col-lected from Wuyishan nature reserve[J]. Biodiversity Science, 2016, 24(10):1164-1176.(in Chinese) doi: 10.17520/biods.2016085
    [9] 郑梅霞, 朱育菁, 刘波, 等.云南苍山芽胞杆菌多样性研究[J].福建农业学报, 2019, 34(1):104-116. doi: 10.19303/j.issn.1008-0384.2019.01.015?articleIndex=15

    ZHENG M X, ZHU Y J, LIU B, et al. Microbial diversity of Bacillus community in soils at Cangshan Yunnan[J]. Fujian Journal of Agricultural Sciences, 2019, 34(1):104-116.(in Chinese) doi: 10.19303/j.issn.1008-0384.2019.01.015?articleIndex=15
    [10] PISA G, MAGNANI G S, WEBER H, et al. Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil[J]. Brazilian Journal of Medical and Biological Research, 2011, 44(12):1215-1221. doi: 10.1590/S0100-879X2011007500148
    [11] 张华勇, 李振高.土壤芽孢杆菌及其资源的持续利用[J].土壤, 2001, 33(2):92-97. http://d.old.wanfangdata.com.cn/Periodical/tr200102009

    ZHANG H Y, LI Z G. The sustainable use of resources of soil Bacillus[J]. Soil, 2001, 33(2):92-97.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tr200102009
    [12] 吴海燕, 金荣德, 范作伟, 等.解磷巨大芽孢杆菌(Bacillus megaterium)的溶磷机理探讨[J].吉林农业大学学报, 2014(2):171-175. http://d.old.wanfangdata.com.cn/Periodical/jlnydxxb201402010

    WU H Y, JIN R D, FAN Z W, et al. Mechanism of solubilizing phosphate by Bacillus megaterium[J].Journal of Jilin Agricultural University, 2014(2):171-175.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jlnydxxb201402010
    [13] 龙苏, 李法峰, 陈明, 等.固氮球形芽孢杆菌与巨大芽孢杆菌的混合增效作用[J].核农学报, 2000, 14(6):337-341. doi: 10.3969/j.issn.1000-8551.2000.06.004

    LONG S, LI F F, CHEN M, et al. The enhanced effect of co-culture on nitrogen-fixing activity of B. sphaerium and B. megaterium[J]. Acta Agriculturae Nucleatae Sinica, 2000, 14(6):337-341.(in Chinese) doi: 10.3969/j.issn.1000-8551.2000.06.004
    [14] 孙明, 喻子牛.苏云金芽孢杆菌中华亚种CT-43菌株伴胞晶体蛋白的特性[J].微生物学报, 1996(4):303-306. http://www.cnki.com.cn/Article/CJFDTotal-WSXB199604009.htm

    SUN M, YU Z N. Characterization of insecticidal crystal proteins of Bacillus thuringiensis subsp. Chinensis CT-43[J]. Acta Microbiologica Sinica, 1996(4):303-306.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-WSXB199604009.htm
    [15] 张霞, 唐文华, 张力群.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用[J].作物学报, 2007, 33(2):236-241. doi: 10.3321/j.issn:0496-3490.2007.02.010

    ZHANG X, TANG W H, ZHANG L Q. Biological control of plant diseases and plant growth promotion by Bacillus subtilis B931[J]. Acta Agronomica Sinica, 2007, 33(2):236-241.(in Chinese) doi: 10.3321/j.issn:0496-3490.2007.02.010
    [16] 张建萍, 董乃源, 余浩滨, 等.应用16S rDNA-RFLP方法分析宁夏地区稻田土壤细菌的多样性[J].生物多样性, 2008, 16(6):586-592. doi: 10.3321/j.issn:1005-0094.2008.06.009

    ZHANG J P, DONG N Y, YU H B, et al. Bacteria diversity in paddy field soil by 16S rDNA-RFLP analysis in Ningxia[J]. Biodiversity Science, 2008, 16(6):586-592.(in Chinese) doi: 10.3321/j.issn:1005-0094.2008.06.009
    [17] 陶金.鄱阳湖湿地围垦后土壤团聚体结构、有机碳及微生物多样性变化的研究[D].南昌: 南昌大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11902-1012428898.htm

    TAO J. The study of changes of SOC content, aggregate structure and evolution of aoil microbial diversity of Poyang Lake[D]. Nanchang: Nanchang University, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-11902-1012428898.htm
    [18] 艾超.长期施肥下根际碳氮转化与微生物多样性研究[D].北京: 中国农业科学院, 2015. http://cdmd.cnki.com.cn/Article/CDMD-82101-1015378889.htm

    AI C. Carbon and nitrogen transformations and microbial diversity in the rhizosphere soil under long-tern fertilization practices[D]. BeiJing: Chinese Academy of Agricultural Sciences, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82101-1015378889.htm
    [19] 王丹, 李恋卿, 刘永卓, 等.不同施肥处理对太湖地区水稻土团聚体粒组细菌和真菌组成和多样性的影响[J].土壤, 2012, 44(2):290-296. doi: 10.3969/j.issn.0253-9829.2012.02.018

    WANG D, LI L Q, LIU Y Z, et al. Influences of Long-term Fertilization on Bacteria and Fungi Community Structures in Different Aggregate-size Aggregates of Paddy Soil in Taihu Lake Region of China[J]. Soils, 2012, 44(2):290-296.(in Chinese) doi: 10.3969/j.issn.0253-9829.2012.02.018
    [20] 丁新景, 敬如岩, 黄雅丽, 等.黄河三角洲刺槐根际与非根际细菌结构及多样性[J].土壤学报, 2017, 54(5):1293-1302. http://d.old.wanfangdata.com.cn/Periodical/trxb201705023

    DING X J, JING R Y, HUANG Y L, et al. Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta[J]. Acta Pedologica Sinica, 2017, 54(5):1293-1302.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/trxb201705023
    [21] 安韶山, 李国辉, 陈利顶.宁南山区典型植物根际与非根际土壤微生物功能多样性[J].生态学报, 2010, 31(18):5225-5234. http://d.old.wanfangdata.com.cn/Periodical/stxb201118014

    AN S S, LI G H, CHEN L D. Soil microbial functional diversity between rhizosphere and non-rhizosphere of typical plants in the hilly area of southern Nixia[J]. Acta Ecologica Sinica, 2010, 31(18):5225-5234.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stxb201118014
    [22] 李岩, 何学敏, 杨晓东, 等.不同生境黑果枸杞根际与非根际土壤微生物群落多样性[J].生态学报, 2018, 38(17):5-17. http://d.old.wanfangdata.com.cn/Periodical/stxb201817001

    LI Y, HE X M, YANG X D, et al. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats[J]. Acta Ecologica Sinica, 2018, 38(17):5-17.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stxb201817001
    [23] ROOS T B, de MORAES C M, STURBELLE R T, et al. Probiotics Bacillus toyonensis and Saccharomyces boulardii improve the vaccine immune response to Bovine herpesvirus type 5 in sheep[J]. Research in Veterinary Science, 2017:260-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c44217046d312dac733644cd26518c79
    [24] KANTAS D, PAPATSIROS V G, TASSIS P D, et al. A feed additive containing Bacillus toyonensis Toyocerin(protects against enteric pathogens in postweaning piglets[J]. Journal of Applied Microbiology, 2015, 118(3):727-738. doi: 10.1111/jam.12729
    [25] 郭晓军, 袁洪水, 刘慧娟, 等.假蕈状芽孢杆菌纤溶酶基因的克隆与表达[J].中国医药工业杂志, 2011, 42(1):14-24. doi: 10.3969/j.issn.1001-8255.2011.01.006

    GUO X J, YUAN H S, LIU H J, et al. Cloning and expression of fibrinolytic enzyme gene from Bacillus pseudomycoides[J]. Chinese Journal of Pharmaceuticals, 2011, 42(1):14-24.(in Chinese) doi: 10.3969/j.issn.1001-8255.2011.01.006
    [26] KANG H C, KIM N H, JEONG Y J, et al. Biochemical characteristics of a bacteria (Bacillus pseudomycoides) alanine racemase expressed in Escherichia coli[J]. Journal of Applied Biological Chemistry, 2010, 53(3):132-138. doi: 10.3839/jabc.2010.025
    [27] WANG K, YAN P S, CAO L X. Plackett-burman design for media nutrients of biocontrol Lysinibacillus xylanilyticus BPM1 against Aflatoxin[J]. Applied Mechanics & Materials, 2014, 522-524:295-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.522-524.295
    [28] 喻江.玉米和大豆根内生细菌多样性及促生细菌鉴定评价[D].哈尔滨: 东北农业大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3189209

    YU J. Diversity of root endophytic bacteria and identification of promoting growth bacteria in corn and soybean[D]. Harbing: Northeast Agricultural University, 2016.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3189209
    [29] 陶爱丽.利用小麦内生细菌对小麦秆黑粉病的生物防治研究[D].南宁: 广西大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10593-1015436235.htm

    TAO A L. The biological control research of using endophytic bacteria strain of wheat to control the wheat stem smut[D]. Nanning: Guangxi University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10593-1015436235.htm
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2244
  • HTML全文浏览量:  304
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2019-07-14
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回