Thermal Property of Soil at Sugarcane Fields in Guangxi Affected by Tillage Method
-
摘要:
目的 探讨不同耕作方式下甘蔗地土壤热性质的动态变化,为合理有效利用水热资源提供依据。 方法 在广西农业科学院里建甘蔗种植地进行研究,定位监测粉垄耕作(T)处理和免耕(NT)处理方式下,5、20和40 cm深度土层的土壤含水量和土壤温度,并结合土壤基本参数,分析2个处理下土壤温度、土壤热导率和土壤热通量的变化规律。 结果 NT处理受其质地影响,土壤温度的分布为5 cm > 40 cm > 20 cm,差异均显著(P < 0.05,下同);T处理在一定程度上影响了土壤质地,其土壤温度分布为5 cm > 20 cm > 40 cm,差异均显著。研究期内,T处理土壤热导率在20 cm以上土层高于NT处理。T处理有利于降水入渗、储水性能良好、下层水分可供给上层等效果,相比于NT处理改善了土壤热导率沿土壤剖面的分布。同时,不同降水条件下,处理间的土壤热通量变化相同:NT处理在5~20 cm层大于T处理,而在20~40 cm层小于T处理,差异均达到显著水平。说明T处理土壤热通量由上至下减小,变化规律明显;而NT处理上下层间波动较大。 结论 粉垄耕作处理相比于免耕处理,在一定程度上改善了本地区的土壤质地和土壤温度分布,土壤热导率和土壤热通量的变化更具稳定性和规律性,可作为广西地区农业种植和管理方式的参考。 Abstract:Objective The hydrothermal dynamics of soil at sugarcane fields in Guangxi province was studied under different tillage methods to provide information for effective utilization of the natural resource. Method The moisture content and temperature of soil in the depths of 5, 20 and 40 cm under two tillage methods were monitored. Smash-ridging tillage (T) and no-tillage (NT) were applied in the sugarcane field at Lijian Research Station of Guangxi Academy of Agricultural Sciences in Nanning. In addition to the basic properties, the temperature, thermal conductivity, and heat flux of the soil under the treatments were collected for analysis. Result The texture of the NT-treated soil invariably affected the temperature distribution at different depths to show it from high to low in the order of 5 cm > 40 cm > 20 cm with significant differences at P < 0.05 (same level for the following). Whereas, when T was applied the texture was altered to cause the temperature ranking changed to 5 cm > 20 cm > 40 cm. During the time of this study, the thermal conductivity of the 5 cm and 20 cm soil under the T treatment was higher than that under NT. Compared to NT, T provided advantages on the infiltration, storage, and improved water distribution in the soil, leveling the thermal conductivities in various layers. Furthermore, varied precipitation significantly affected the heat flux in the 5-20 cm layer under NT more than T but less in the 20-40 cm layer. It indicated that the heat flux in the T-treated soil decreased gradually from the top to the deeper layers. On the other hand, in the NT-treated soil, it fluctuated greatly between the upper and lower layers with varied rain falls. Conclusion The smash-ridging tillage improved the texture and temperature distribution of the soil in the tested range with a more constant and predictable thermal conductivity and heat flux over no-tillage method. -
Key words:
- no-tillage /
- smash-ridging tillage /
- soil temperature /
- soil thermal conductivity /
- soil heat flux
-
表 1 3种土壤水分条件下土壤的含水量、热导率和热通量
Table 1. Moisture content, thermal conductivity, and heat flux rate of soils containing varied amount of water
试验处理
Treatments土壤水分条件
Moisture conditions5 cm含水量
Water content of 5 cm soil/(cm3·cm-3)5 cm热导率
Thermal conductivity of 5 cm soil/(W·m-1·K-1)5~20 cm热通量Heat flux of 5 cm soil/(W·m-2) 20 cm含水量Water content of 20 cm soil/(cm3·cm-3) 20 cm热导率
Thermal conductivity of 20 cm soil/(W·m-1·K-1)20~40 cm热通量Heat flux of 20-40 cm soil/(W·m-2) 40 cm含水量Water content of 40 cm soil/(cm3·cm-3) 40 cm热导率
Thermal conductivity of 40 cm soil/(W·m-1·K-1)T 湿润条件Wetmoisture conditions 0.309±0.010Ac 1.323±0.019Ac -182.656±42.483Ba 0.343±0.014Ab 1.355±0.022Ab -145.080±19.061Aa 0.383±0.014Aa 1.411±0.022Aa 中等水分条件
Mediummoisture conditions0.304±0.007Aa 1.315±0.012Aa -101.966±33.968Ba 0.275±0.007Ab 1.243±0.012Ab -120.840±18.035Aa 0.322±0.011Aa 1.300±0.017Aa 干旱条件
Dry moisture conditions0.295±0.007Aa 1.272±0.011Aa -71.772±33.041Aa 0.268±0.007Ac 1.223±0.011Ab -50.002±17.196Ba 0.276±0.009Bb 1.202±0.012Bb NT 湿润条件
Wetmoisture conditions0.315±0.008Ab 1.348±0.014Aa -347.129±50.110Aa 0.290±0.019Bc 1.240±0.032Bc 11.751±13.669Bb 0.367±0.011Aa 1.410±0.018Aa 中等水分条件
Mediummoisture conditions0.287±0.008Bb 1.297±0.013Bb -257.018±31.863Aa 0.240±0.008bc 1.153±0.015Bc 51.766±14.054Bb 0.330±0.007Aa 1.336±0.011Aa 干旱条件
Dry moisture conditions0.260±0.004Bb 1.241±0.002Bb 13.574±25.967Bb 0.220±0.007Bc 1.113±0.011Bc -89.052±17.074Aa 0.306±0.006Aa 1.302±0.008Aa 注:表中不同大写字母表示同一水分条件和同一深度下不同处理间的差异显著(P < 0.05);不同小写字母表示同一处理和同一水分条件下不同土层深度下的差异显著(P < 0.05)。
Note:Different capital letters indicated significant difference under different tillage patterns when the water conditions and soil depths are the same (P < 0.05); different small letters indicated significant difference under different soil depths when the tillage patterns and water conditions are the same (P < 0.05). -
[1] LU S, REN T S, GONG Y, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1):8-14. doi: 10.2136/sssaj2006.0041 [2] 邸佳颖, 刘晓娜, 任图生.原状土与装填土热特性的比较[J].农业工程学报, 2012, 28(21):74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201221013DI J Y, LIU X N, REN T S. Comparative study on thermal properties of intact and repacked soil samples[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(21):74-79.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201221013 [3] 李玉洁, 王慧, 赵建宁, 等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报, 2015, 26(3):939-948. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J].Chinese Journal of Applied Ecology, 2015, 26(3):939-948.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038 [4] 付强, 颜培儒, 李天霄, 等.冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J].农业工程学报, 2017, 33(20):98-105. doi: 10.11975/j.issn.1002-6819.2017.20.013FU Q, YAN P R, LI T X, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and heat flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):98-105.(in Chinese) doi: 10.11975/j.issn.1002-6819.2017.20.013 [5] BATENI S, ENTEKHABI D, CASTELLI F. Mapping evaporation and estimation of surface control of evaporation using remotely sensed land surface temperature from a constellation of satellites[J]. Water Resources Research, 2013, 49(2):950-968. doi: 10.1002/wrcr.20071 [6] 邵明安, 王全九, 黄明斌.土壤物理学[M].北京:高等教育出版社, 2006.SHAO M A, WANG Q J, HUANG M B. Soil Physics[M].Beijing:Higher Education Press, 2006.(in Chinese) [7] ZHANG M, LU Y L, HEITMAN J L, et al. Temporal changes of soil water retention behavior as affected by wetting and drying following tillage[J]. Soil Science Society of America Journal, 2017, 81(6):1288-1295. doi: 10.2136/sssaj2017.01.0038 [8] 卢奕丽, 张猛, 刘晓娜, 等.含水量和容重对旱地耕层土壤热导率的影响及预测[J].农业工程学报, 2018, 34(18):146-151. doi: 10.11975/j.issn.1002-6819.2018.18.018LU Y L, ZHANG M, LIU X N, et al. Effects of soil water content and bulk density on thermal conductivity of plough layer soil in arid land and its prediction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18):146-151.(in Chinese) doi: 10.11975/j.issn.1002-6819.2018.18.018 [9] 张少良, 张兴义, 于同艳, 等.黑土区耕作措施对春季耕层温度的影响[J].农业现代化研究, 2009, 30(1):113-117. doi: 10.3969/j.issn.1000-0275.2009.01.027ZHANG S L, ZHANG X Y, YU T Y, et al.Effects of tillage on soil temperature of plough layer in spring of black soil regions of China[J]. Research of Agricultural Modernization, 2009, 30(1):113-117.(in Chinese) doi: 10.3969/j.issn.1000-0275.2009.01.027 [10] 景明, 姜丙洲, 施坰林.西北内陆河流域免耕覆盖条件下土壤温度效应[J].干旱区资源与环境, 2008, 22(4):139-142. doi: 10.3969/j.issn.1003-7578.2008.04.026JING M, JIANG B Z, SHI T L.Soil thermal effects of no-tillage with straw mulch in inland river basin, northwest China[J].Journal of Arid Land Resources and Environment, 2008, 22(4):139-142.(in Chinese) doi: 10.3969/j.issn.1003-7578.2008.04.026 [11] 韦本辉.粉垄耕作技术对粮食生产和环境安全的影响[J].安徽农业科学, 2015, 43(35):60-61. doi: 10.3969/j.issn.0517-6611.2015.35.023WEI B H. Effects of smash-ridging tillage techniques on food production and environmental safety[J]. Journal of Anhui Agriculture Science, 2015, 43(35):60-61.(in Chinese) doi: 10.3969/j.issn.0517-6611.2015.35.023 [12] 甘磊, 朱彦光, 严磊, 等.不同耕作方式下甘蔗地土壤热容量的变化[J].西南农业学报, 2018, 31(8):1676-1681. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201808021GAN L, ZHU Y G, YAN L, et al. Study on changes of heat capacity in sugarcane soil under different tillage patterns[J]. Southwest China Journal of Agricultural Sciences. 2018, 31(8):1676-1681.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201808021 [13] 程东娟, 张亚丽, 赵新宇, 等.土壤物理实验指导[M].北京:中国水利水电出版社, 2012.CHENG D J, ZHANG Y L, ZHAO X Y, et al. Soil Physics Experimental Instruction[M]. Beijing:China Water & Power Press, 2012.(in Chinese) [14] CAMPBELL G S. Soil physics with Basic-Transport models for soil-plant systems[J]. Journal of Hydrology, 1985, 90(3/4):359-360. http://cn.bing.com/academic/profile?id=b46af1d90b73fb300ab6b7b294cfd952&encoded=0&v=paper_preview&mkt=zh-cn [15] JURY W, HORTON R. Soil Physics[M]. Hoboken:John Wiley & Sons, 2004. [16] 李娜娜, 池宝亮, 梁改梅.旱地玉米秸秆地膜二元覆盖的土壤水热效应研究[J].水土保持学报, 2017, 31(4):248-253. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201704039LI N N, CHI B L, LIANG G M. Study on soil water and heat effect of plastic film combined with straw mulchin dryland maize field[J]. Journal of Soil and Water Conservation, 2017, 31(4):248-253.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201704039 [17] 陈帅, 陈强, 孙涛, 等.黑土坡耕地秸秆覆盖对表层土壤结构和导气性的影响[J].水土保持通报, 2016, 36(1):17-21. http://d.old.wanfangdata.com.cn/Periodical/stbctb201601004CHEN S, CHEN Q, SUN T, et al.Effects of straw mulching on topsoil structureand air permeability in black soil sloping farmland[J]. Bulletin of Soil and Water Conservation, 2016, 36(1):17-21.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stbctb201601004 [18] 陈善雄, 陈守义.砂土热导率的实验研究[J].岩土工程学报, 1994, 16(5):47-53. doi: 10.3321/j.issn:1000-4548.1994.05.006CHEN S X, CHEN S Y. Experimental study on thermal conductivity of sands[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(5):47-53.(in Chinese) doi: 10.3321/j.issn:1000-4548.1994.05.006 [19] 刘斌, 甘秀芹, 韦本辉, 等.粉垄耕作对南方旱坡木薯种植地水土流失及产量的影响[J].西南农业学报, 2016, 29(12):2806-2811. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201612008LIU B, GAN X Q, WEI B H, et al. Effects of Fenlong cultivation on water and soil erosion and cassava yield in south dry slope cropland[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(12):2806-2811.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201612008 [20] 孔维萍, 成自勇, 张芮, 等.保护性耕作在黄土高原的应用和发展[J].干旱区研究, 2015, 32(2):240-250. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201502005KONG W P, CHENG Z Y, ZHANG R, et al. Application and development of conservation tillage techniques in the loess plateau[J]. Arid Zone Research, 2015, 32(2):240-250.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ghqyj201502005 [21] 余海英, 彭文英, 马秀, 等.免耕对北方旱作玉米土壤水分及物理性质的影响[J].应用生态学报, 2011, 22(1):99-104. http://d.old.wanfangdata.com.cn/Periodical/yystxb201101016YU H Y, PENG W Y, MA X, et al. Effects of no-tillage on soil water content and physical properties of spring corn fields in semiarid region of northern China[J].Chinese Journal of Applied Ecology, 2011, 22(1):99-104.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yystxb201101016 [22] 李轶冰, 逄焕成, 杨雪, 等.粉垄耕作对黄淮海北部土壤水分及其利用效率的影响[J].生态学报, 2013, 33(23):7478-7486. http://d.old.wanfangdata.com.cn/Periodical/stxb201323018LI Y B, PANG H C, YANG X, et al. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in north Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2013, 33(23):7478-7486.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stxb201323018 [23] 王世佳, 蒋代华, 朱文国, 等.粉垄耕作对农田赤红壤团聚体结构的影响[J/OL].土壤学报: 1-10.http://kns.cnki.net/kcms/detail/32.1119.P.20190510.1156.006.html.WANG S J, JIANG D H, ZHU W G, et al. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil[J]. Acta Pedologica Sinica, 1-10. http://kns.cnki.net/kcms/detail/32.1119.P.20190510.1156.006.html. (in Chinese) [24] 甘磊, 张静举, 黄太庆, 等.基于CT技术的甘蔗地不同耕作措施下土壤孔隙结构研究[J].西南农业学报, 2017, 30(8):1843-1848. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201708025GAN L, ZHANG J J, HUANG T Q, et al. Pore structure in sugarcane soil under different tillage managements based on ct scanning[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(8):1843-1848.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201708025 [25] 杨阳.黄土高原雨养冬小麦水氮利用及土壤氨挥发对保护性耕作的响应[D].杨凌: 西北农林科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015333732.htmYANG Y. Effects of conservation tillage on water and nitrogen use in rainfed winter wheat and soil ammonia volatilization in loess plateau[D].Yangling: Northwest A & F University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10712-1015333732.htm [26] 李轶冰, 逄焕成, 李华, 等.粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响[J].中国农业科学, 2013, 46(14):3055-3064. doi: 10.3864/j.issn.0578-1752.2013.14.022LI Y B, PANG H C, LI H, et al. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in north Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2013, 46(14):3055-3064.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.14.022 [27] GAN L, PENG X H, PETH S, et al. Effects of grazing intensity on soil thermal properties and heat flux under Leymuschinensis and Stipa grandis vegetation in Inner Mongolia, China[J].Soil and Tillage Research, 2012, 118(5):147-158. https://www.deepdyve.com/lp/elsevier/effects-of-grazing-intensity-on-soil-thermal-properties-and-heat-flux-LZUz3vjf9I