• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高产木质素降解酶菌株的筛选及其生物学特性研究

袁海华 张保 张颖 敖新宇

袁海华, 张保, 张颖, 敖新宇. 高产木质素降解酶菌株的筛选及其生物学特性研究[J]. 福建农业学报, 2019, 34(7): 829-836. doi: 10.19303/j.issn.1008-0384.2019.07.012
引用本文: 袁海华, 张保, 张颖, 敖新宇. 高产木质素降解酶菌株的筛选及其生物学特性研究[J]. 福建农业学报, 2019, 34(7): 829-836. doi: 10.19303/j.issn.1008-0384.2019.07.012
YUAN Hai-hua, ZHANG Bao, ZHANG Ying, AO Xin-yu. A Study on Ligninolytic Enzyme-producing Fungi[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 829-836. doi: 10.19303/j.issn.1008-0384.2019.07.012
Citation: YUAN Hai-hua, ZHANG Bao, ZHANG Ying, AO Xin-yu. A Study on Ligninolytic Enzyme-producing Fungi[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 829-836. doi: 10.19303/j.issn.1008-0384.2019.07.012

高产木质素降解酶菌株的筛选及其生物学特性研究

doi: 10.19303/j.issn.1008-0384.2019.07.012
基金项目: 

国家自然科学基金项目 31560013

详细信息
    作者简介:

    袁海华(1994-), 女, 硕士研究生, 研究方向:生物化学与分子生物学(E-mail:1137304061@qq.com)

    通讯作者:

    敖新宇(1978-), 男, 硕士, 副教授, 研究方向:生物化学与分子生物学(E-mail:54700875@qq.com)

  • 中图分类号: Q93

A Study on Ligninolytic Enzyme-producing Fungi

  • 摘要:   目的  获得高产木质素降解酶(LMLs,包括漆酶Lac、锰过氧化物酶MnP、木质素过氧化物酶LiP)的菌株,为木腐菌菌种资源的合理开发和应用提供一定理论依据。  方法  对9株具有产LMLs能力的木腐菌进行产酶筛选,并对筛选出的菌株的生物学特性进行研究。  结果  结果表明:在9株木腐菌中,产LMLs能力较高的菌株分别为LS136(Lac:0.18 U·L-1、LiP:109.68 U·L-1、MnP:140.38 U·L-1)、LJ485(Lac:136.99 U·L-1、LiP:9.53 U·L-1、MnP:72.05 U·L-1)和LJ496(Lac:163.39 U·L-1、LiP:9.50 U·L-1、MnP:74.36 U·L-1)。生物学特性研究结果显示3种菌株最适生长温度均为25℃左右,适宜的生长pH值在4~8。此外,3种菌株对0~8 mmol·L-1的重金属Cr3+、Pb2+以及0~4 mmol·L-1的Cu2+均有较强的耐受性。当Cr3+为1~4 mmol·L-1时,对LJ485和LJ496的生长具有一定的促进作用。  结论  菌株LS136、LJ485和LJ496分别属于韧革菌属Stereum sp.彩绒革盖菌Trametes versicolor和小薄孔菌Antrodiella sp.,具有较强的产LMLs能力和一定的重金属耐受性,为降解木质素的菌株开发提供了菌种资源参考。
  • 表  1  9株木腐菌在发酵培养基中的木质素降解酶活性变化

    Table  1.   Ligninolytic enzyme activities in fermentation media of 9 strains of ligninolytic fungi

    [单位/(U·L-1)]
    木质素降解酶
    Ligninolytic enzymes
    菌株
    Strain
    0 d 3 d 6 d 9 d 12 d 15 d 18 d 21 d
    漆酶Lac LS77 - 0.79±0.35a 8.84±3.40ab 10.78±1.16ab 11.92±10.38ab 20.10±15.68ab 57.96±10.92c 23.61±4.69b
    LS136 - 0.12±0.17a - - 0.18±0.15a - 0.06±0.05a 0.15±0.12a
    LS180 - 4.78±6.76a 0.28±0.19a 0.44±0.16a 2.47±2.32a 0.47±0.37a 0.01±0.01a 0.17±0.17a
    LJ367 - 0.06±0.08a - - 0.11±0.16a - 0.01±0.01a -
    LJ417 - 0.57±0.66a 0.12±0.17a 0.24±0.24a 4.30±4.09a 5.52±3.51a 60.40±16.25b 127.38±1.26c
    LJ460 - 0.06±0.09a - - 0.47±0.13a 0.20±0.29a - -
    LJ483 - 3.23±2.33a 20.76±22.74a 3.68±2.85a 3.66±5.17a 1.85±2.62a - 0.19±0.00a
    LJ485 - 10.65±3.13a 65.24±11.01b 105.17±12.95c 136.99±11.93d 120.69±11.24cd 133.36±1.29cd 127.52±2.23cd
    LJ496 - 6.06±2.13a 47.08±7.24b 138.43±14.51c 161.28±0.75d 163.39±2.96d 130.53±5.17c 126.73±3.82c
    木质素过氧化物酶LiP LS77 - 7.28±5.76a 2.47±2.51a 1.79±1.29a 7.67±1.69a 2.15±0.22a 6.67±0.00a -
    LS136 - - 5.09±1.96a 9.09±5.11a 55.91±25.20ab 109.68±54.61b 17.37±8.03a -
    LS180 - 2.80±3.95a 2.29±3.24a 2.22±3.14a 4.59±3.78a 10.00±6.89a 3.98±0.54a -
    LJ367 - 21.72±30.72a 2.33±1.69a 1.25±1.17a 7.31±2.04a 4.84±2.15a 4.19±0.18a -
    LJ417 - 36.31±28.15b 1.79±1.31a 2.11±1.06a 12.11±5.10ab 4.19±1.75a 3.84±1.91a -
    LJ460 - 1.68±2.38a 1.97±1.77a 15.30±6.15b 5.10±1.99a 4.05±2.42a 5.00±3.60a -
    LJ483 - 1.54±1.16a 2.07±1.48a 1.29±1.82a 13.55±0.00c 6.99±0.00b 5.16±0.00b -
    LJ485 - 0.22±0.30a 3.69±0.98a 9.53±10.19a 4.19±0.32a 5.96±2.38a 4.80±1.49a -
    LJ496 - 11.29±9.01a 2.29±1.53a 3.15±4.46a 9.50±4.45a 9.28±1.14a 6.02±0.99a -
    锰过氧化物酶MnP LS77 - 63.15±1.46b 24.92±1.63a 19.74±5.79a 27.33±12.48a 23.79±6.75a 14.36±4.04a 22.00±4.12a
    LS136 - 45.00±24.56a 117.00±22.17b 113.46±34.38b 121.00±62.38b 140.38±34.08b - 3.95±1.67a
    LS180 - 30.38±1.15b 21.15±5.77ab 22.87±7.99ab 14.92±1.85a 14.54±4.54a 20.00±6.31ab 21.54±3.23ab
    LJ367 - 41.13±58.16a 19.79±6.23a 25.69±3.77a 26.77±16.72a 23.54±0.15a 20.72±1.34a 22.87±0.76a
    LJ417 - 51.90±47.73a 26.26±1.13a 21.79±3.23a 31.95±7.23a 26.62±3.83a 18.67±1.27a 27.31±4.96a
    LJ460 - 18.69±3.31ab 31±0.44cd 36.87±6.46d 23.85±1.78bc 18.21±2.18ab 10.77±9.58a 19.08±0.00ab
    LJ483 - 17.46±4.38a 30.15±5.23b - 42.62±0.00c 27.08±0.00b 14.15±0.00a 18.92±0.00a
    LJ485 - 15.08±0.00a 49.44±4.46ab 72.05±31.43b 41.49±7.27ab 29.49±4.66a 22.82±3.47a 30.92±8.38a
    LJ496 - 36.62±28.80a 28.51±2.59a 38.54±1.95a 56.77±17.24ab 74.36±12.11b 32.36±6.40a 25.38±8.61a
    注:“-”表示未检测到酶活。表中不同小写字母表示酶活在P < 0.05水平存在显著差异。表 3~6同。
    Note:“-”means undetected.Different letters indicate the same type of wood rot fungi in the fermentation culture medium, and there are significant differences at P < 0.05 levels at different times.The same as Table 3-6.
    下载: 导出CSV

    表  2  不同温度对木质素降解菌生长速度的影响

    Table  2.   Effect of temperature on growth of ligninolytic fungi

    [单位/(mm·d-1)]
    菌株
    Strain
    5℃ 15℃ 25℃ 35℃ 45℃ 55℃
    LS136 1.13±0.00b 6.31±0.09c 11.25±0.00d 0.63±0.00a 0.63±0.00a 0.63±0.00a
    LJ485 0.83±0.00a 4.83±0.24b 15.00±0.00d 5.33±0.24c 0.83±0.00a 0.83±0.00a
    LJ496 0.83±0.00a 5.33±0.00c 15.00±0.00d 1.29±0.04b 0.83±0.00a 0.83±0.00a
    下载: 导出CSV

    表  3  不同pH值对木质素降解菌生长速度的影响

    Table  3.   Effect of pH on growth of ligninolytic fungi

    [单位/(mm·d-1)]
    菌株
    Strain
    3 4 5 6 7 8 9
    LS136 1.50±0.00b 6.06±0.06c 8.56±0.19e 11.13±0.13f 11.06±0.06f 6.59±0.03d 0.64±0.00a
    LJ485 0.83±0.00a 8.88±1.10c 12.25±0.08de 13.75±1.25e 10.04±0.79cd 5.79±0.21b 0.83±0.00a
    LJ496 0.83±0.00a 12.67±0.00c 15.00±0.00d 14.67±0.33d 15.00±0.00d 14.17±0.83d 5.42±0.42b
    下载: 导出CSV

    表  4  不同浓度Cu2+对木质素降解菌生长速度的影响

    Table  4.   Effect of Cu2+ concentration on growth of ligninolytic fungi

    [单位/(mm·d-1)]
    菌株
    Strain
    1 mmol·L-1 2 mmol·L-1 4 mmol·L-1 8 mmol·L-1 16 mmol·L-1
    LS136 11.25±0.00c 11.13±0.00c 8.94±0.06b 0.97±0.34a 0.63±0.00a
    LJ485 15.00±0.00d 13.25±0.08c 10.58±0.25b 0.83±0.00a 0.83±0.00a
    LJ496 15.00±0.00c 15.00±0.00c 12.25±0.83b 0.83±0.00a 0.83±0.00a
    下载: 导出CSV

    表  5  不同浓度Cr3+对木质素降解菌生长速度的影响

    Table  5.   Effect of Cr3+ concentration on growth of ligninolytic fungi

    [单位/(mm·d-1)]
    菌株
    Strain
    0.25 mmol·L-1 0.50 mmol·L-1 1.00 mmol·L-1 2.00 mmol·L-1 4.00 mmol·L-1 8.00 mmol·L-1 16.00 mmol·L-1
    LS136 11.15±0.21d 11.30±0.00d 11.20±0.14d 11.30±0.00d 10.30±0.00c 5.60±0.00b 3.05±0.07a
    LJ485 - - 10.90±1.30b 11.25±0.07b 13.50±0.28c 10.20±0.71b 2.50±0.28a
    LJ496 15.00±0.00d 15.00±0.00d 13.70±0.00c 13.6±0.85c 15.00±0.00d 12.05±0.35b 3.20±0.00a
    下载: 导出CSV

    表  6  不同浓度Pb2+对木质素降解菌生长速度的影响

    Table  6.   Effect of Pb2+ concentration on growth of ligninolytic fungi

    [单位/(mm·d-1)]
    菌株Strain 0.5 mmol·L-1 1.0 mmol·L-1 2.0 mmol·L-1 4.0 mmol·L-1 8.0 mmol·L-1 16.0 mmol·L-1
    LS136 11.30±0.00c 11.30±0.00c 11.30±0.00c 11.30±0.00c 10.05±0.07b 2.55±0.64a
    LJ485 - 14.60±0.57d 11.00±0.28bc 11.55±0.35c 10.10±0.57b 6.00±0.28a
    LJ496 15.00±0.00d 15.00±0.00d 15.00±0.00d 13.40±0.14c 9.50±0.71b 0.80±0.00a
    下载: 导出CSV
  • [1] 1] MILLATI R, SYAMSIAH S, NIKLASSON C, et al. Biological pretreatment of lignocelluloses with white-rot fungi and its applications:a review[J]. BioResources, 2011, 6(4):5224-5259. http://cn.bing.com/academic/profile?id=903c59a5231b8f6ec4104edbbefdd1ca&encoded=0&v=paper_preview&mkt=zh-cn
    [2] GUILLÉN F, MARTÍNEZ M J, GUTIÉRREZ A, et al. Biodegradation of lignocellu-losics:microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. International Microbiology, 2005, 8:195-204. https://www.researchgate.net/publication/7563696_Biodegradation_of_lignocellulosics_Microbial_chemical_and_enzymatic_aspects_of_the_fungal_attack_of_lignin
    [3] WONG D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2):174-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4e41afdcdd7c23137d8464582c15232
    [4] D'SOUZA T M, MERRITT C S, REDDY C A. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 1999, 65(12):5307-5313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001776258
    [5] ADASKAVEG J E, GILBERTSON R L, BLANCHETTE R A. Comparative studies of delignification caused by Ganoderma species[J]. Applied and Environmental Microbiology, 1990, 56(6):1932-1943. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_184533
    [6] WANG F, AI M, YANG G, et al. Influence of Carbon Source on the Production of Extracellular Ligninolytic Enzymes by Phanerochaete chrysosporium[J]. BioResources, 2016, 11(3):5676-5686. http://cn.bing.com/academic/profile?id=77ca39709de30a75a4540726d05ea4c2&encoded=0&v=paper_preview&mkt=zh-cn
    [7] JANUSZ G, KUCHARZYK K H, PAWLIK A, et al. Fungal laccase, manganese peroxidase and lignin peroxidase:gene expression and regulation[J]. Enzyme and Microbial Technology, 2013, 52(1):1-12. doi: 10.1016/j.enzmictec.2012.10.003
    [8] GALHAUP C, HALTRICH D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper[J]. Applied Microbiology and Biotechnology, 2001, 56(1-2):225-232. doi: 10.1007/s002530100636
    [9] SELINHEIMO E, KRUUS K, BUCHERT J, et al. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs[J]. Journal of Cereal Science, 2006, 43(2):152-159. doi: 10.1016/j.jcs.2005.08.007
    [10] BAJPAI P. Application of enzymes in the pulp and paper industry[J]. Biotechnology Progress, 1999, 15(2):147-157. doi: 10.1021/bp990013k
    [11] JEBAPRIYA G R, GNANADOSS J J. Bioremediation of textile dye using white rot fungi:A review[J].International Journal of Current Research and Review, 2013, 5(3):1-13. http://cn.bing.com/academic/profile?id=a8ed4eff0af1d98ff9df75905d9398eb&encoded=0&v=paper_preview&mkt=zh-cn
    [12] GAI Y P, ZHANG W T, MU Z M, et al. Involvement of ligninolytic enzymes in degradation of wheat straw by Trametes trogii[J]. Journal of Applied Microbiology, 2014, 117(1):85-95. doi: 10.1111/jam.12529
    [13] ZOUARI-MECHICHI H, MECHICHI T, DHOUIB A, et al. Laccase purification and characterization from Trametes trogii isolated in Tunisia:decolorization of textile dyes by the purified enzyme[J]. Enzyme and Microbial Technology, 2006, 39(1):141-148. doi: 10.1016/j.enzmictec.2005.11.027
    [14] TIEN M, KIRK T K. Lignin Peroxidase of Phanerochaete Chrysosporium[M]. Methods in enzymology. Academic Press, 1988, 161:238-249.
    [15] MURUGESAN K, NAM I H, KIM Y M, et al. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture[J]. Enzyme and Microbial Technology, 2007, 40(7):1662-1672. doi: 10.1016/j.enzmictec.2006.08.028
    [16] MARCEL KOELEMAN, WILLEM JANSSEN vd LAAK, HANNAH IETSWAART. Dispersion of PAH and heavy metals along motorways in the Netherlands-an overview[J]. Science of the Total Environment, 1999, 235(1):347-349. http://cn.bing.com/academic/profile?id=1829cf79f611c59b682b258f9f3a32f6&encoded=0&v=paper_preview&mkt=zh-cn
    [17] BALDRIAN P, GABRIEL J. Effect of heavy metals on the growth of selected wood-rotting basidiomycetes[J]. Folia Microbiologica, 1997, 42(5):521-523. doi: 10.1007/BF02826566
    [18] MANDAL T K, BALDRIAN P, GABRIEL J, et al. Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans[J]. Chemosphere, 1998, 36(3):435-440. doi: 10.1016/S0045-6535(97)00363-9
  • 加载中
表(6)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  429
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 修回日期:  2019-06-22
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回