Research Advances on Plant Toxicity Induced by Nanoparticles of Rare Earth Oxide
-
摘要: 稀土氧化物纳米颗粒(Rare Earth Oxide Nanoparticles,REO NPs)具有纳米毒性和金属毒性的双重效应,其毒性效应、生态环境风险引起国内外学者的广泛关注。随着纳米技术的快速发展,纳米颗粒必然通过各种途径进入环境,给生态环境与人类健康造成危害。因此,研究REO NPs在环境介质中的迁移转化及其对植物的毒性效应机制,对REO NPs合理应用及其生态安全评价具有重要的理论价值和实践指导意义。本文通过查阅文献资料,总结了在水培、土培条件下REO NPs对蔬菜和农作物毒性效应、毒性机理及其影响因素,并在此基础上就REO NPs毒性效应和机理研究进行了展望。REO NPs毒性效应主要表现为:(1)抑制根系生长发育;(2)抑制叶绿素合成进而影响光合效率和生物量。毒性机理主要包括:(1)REO NPs溶出离子直接致毒或与矿质营养离子发生竞争,抑制营养吸收;(2)REO NPs破坏细胞选择透性、产生活性氧自由基、使细胞膜发生脂质过氧化而丧失功能;(3)REO NPs附着于组织表面,阻碍水分、营养物质运输和离子交换。影响REO NPs毒性的因子主要包括REO NPs特性(如溶解性、带电性、粒径大小及形状)、植物本身敏感性或耐受性、环境条件(如酸碱性、带电性等)。REO NPs的毒性效应研究存在选择的污染物类型较少,主要针对幼苗期的植物,少有分子生物学、土培方式、全环境条件研究等问题,后期可从上述方面进行深入研究。Abstract: Rare earth oxide nanoparticles (REO NPs) have caught the attention by scientists worldwide as they can potentially harm the environment due to the toxicity associated with the particle size as well as the chemical property. With the advancement of nanotechnology, NPs inevitably enter the environment through various channels causing detrimental effects on the environment and human health. Therefore, studying the translocation and transformation of REO NPs in media and the response mechanism of plants toward the toxicity carries important theoretical and practical significance for the material applications and ecological security. This article summarizes the mechanism and affecting factors associated with the toxicity of REO NPs on the crops cultivated on soil or hydroponics and discusses the prospects of future research and utilization of the NPs. Currently, the toxic effects induced by REO NPs on plants were believed to include (1) the inhibition of root growth and development and (2) the retardation of chlorophyll synthesis reducing the photosynthetic efficiency and biomass accumulation. The toxicity mechanisms focused by various studies were mainly on (1) the functions directly caused by the dissolved REO NPs ions or their competing with other mineral ions on nutrient absorption, (2) the obstruction of selective cellular permeability, the production of oxygen free radicals, and the lipid peroxidation of cell membrane, and (3) the adherence of particles on surface of the plant tissues interfering normal water and nutrients transportation and ion exchange. Major factors that affect the toxicity might encompass the properties of REO NPs (such as, solubility, electrification, particle size, and shape), the sensitivity or tolerance of a plant to REO NPs, and the environmental conditions (such as, acidity, alkalinity, electrification, etc.).The study on toxic effects of REO NPs has fewer types of selected pollutants, mainly for plants in seedling stage, and fewer study on molecular biology, soil culture methods, and all environmental conditions. In the later stage, we can conduct in-depth research from the above aspects.
-
Key words:
- REO NPs /
- crops /
- phytotoxicity effect /
- phytotoxicity mechanism /
- affecting factors
-
图 1 NPs对植物细胞的致毒机制(根据文献[13]修改绘制)
Figure 1. Toxicity mechanisms of NPs on plant cells
表 1 稀土氧化物纳米颗粒对植物的毒性效应及机理
Table 1. Toxic effects and mechanism of REO NPs on crops
纳米颗粒
REO NPs植物
Plants暴露方式
Exposure method毒性效应
Toxicity effect毒性机理
Toxicity mechanism文献
LituratureCeO2 玉米 土培 800 mg·kg-1 NPs对玉米生物量和生理指标(净光合速率、蒸腾速率等)没有毒性效应,但其产量低于对照。 溶解出的有毒物质能够进入植物组织内部,导致营养元素含量降低;干扰植物的防御机制。 [30-35] 大豆、黄瓜、生菜、萝卜、油菜、小麦、小麦、南瓜、番茄、洋葱、卷心菜 水培 CeO2能够对大豆和洋葱产生基因毒性,降低大豆产量;降低植物根的生物量;溶解出的Ce能够进入南瓜组织细胞内。 NPs溶解出大量有毒金属离子;产生大量活性氧。 [20, 36-47] Nd2O3 南瓜 水培 明显抑制种子根的伸长;降低南瓜生物量、水分含量等;叶绿素含量降低,叶片黄化;植物组织中营养元素(S、Ca、K、Mg)含量降低。 NPs吸附在根系表面,阻碍离子运输通道,干扰离子转运基因的表达,导致营养元素的吸收受到抑制。 [22] La2O3 黄瓜 水培 黄瓜根部形态发生改变,主根的生长受到抑制,侧根数量增多;生物量降低;叶绿素含量降低;导致植物细胞大量死亡;黄瓜根部细胞的细胞间隙、胞间层、细胞质以及大液泡均发现大量La元素。 溶解出的La离子进入细胞间隙以及细胞质和大液泡中,跟磷元素形成LaPO3和镧羧化物沉淀;水通道蛋白基因相对表达下调;H2O2含量增加。 [23-24, 26, 48] 萝卜、油菜、番茄、生菜、小麦、甘蓝、 水培 明显抑制根的生长 金属离子的释放。 [25, 49] Gd2O3 萝卜、油菜、番茄、生菜、小麦、甘蓝、 水培 明显抑制根的生长。 金属离子的释放;活性氧的产生。 [25] Yb2O3 黄瓜、萝卜、油菜、番茄、生菜、小麦、甘蓝 水培 植物根的伸长受到抑制;植物生物量显著降低。 NPs溶出的大量离子进入细胞内部并发生生物转化,以YbPO4沉淀形式存在于植物细胞中。 [25, 50] -
[1] LEAD J R, BATLEY G E, ALVAREZ P J J, et al.Nanomaterials in the environment: behavior, fate, bioavailability, and effects-an updated review, 2018: 2029-2063. [2] NATASHA G.Nanoparticle safety in doubt[J]. Nature, 2009, 460(7258):937. doi: 10.1038/460937a [3] JUDY J D, UNRINE J MBERTSCH P M.Evidence for biomagnification of gold nanoparticles within a terrestrial food chain[J]. Environmental Science & Technology, 2010, 45(2):776-781. doi: 10.1021-es103031a/ [4] STEGEMEIER J P, COLMAN B P, SCHWAB F, et al.Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles[J]. Environmental Science & Technology, 2017, 51(9):4936-4943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78db38add7cc272c535f6ab2e38bea95 [5] CHEN G, MA C, MUKHERJEE A, et al.Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin:a physiological and molecular response[J]. Nanotoxicology, 2016, 10(9):1243-1253. doi: 10.1080/17435390.2016.1202349 [6] ZHANG Z, HE X, ZHANG H, et al.Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics, 2011, 3(8):816-822. doi: 10.1039/c1mt00049g [7] ZHANG P, MA Y H, ZHANG Z Y.Interactions between engineered nanomaterials and plants:phytotoxicity, uptake, translocation, and biotransformation, in Nanotechnology and Plant Sciences[J]. Springer, 2015:77-99. doi: 10.1007%2F978-3-319-14502-0_5 [8] JONES D L.Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1):25-44. doi: 10.1023/A:1004356007312 [9] LÓPEZ-MORENO M L, DE LA ROSA G, HERNÁNDEZ-VIEZCAS J Á, et al.Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology, 2010, 44(19):7315-7320. doi: 10.1021-es903891g/ [10] ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn:a life cycle study[J]. Journal of Agricultural and Food Chemistry, 2013, 61(49):11945-11951. doi: 10.1021/jf404328e [11] XIA T, KOVOCHICH M, LIONG M, et al.Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2007, 2(1):85-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01a1115ad025a2223879984510fee79f [12] MA C, CHHIKARA S, XING B, et al.Physiological and molecular response of Arabidopsis thaliana L. to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7):768-778. https://www.researchgate.net/publication/256843025_Physiological_and_Molecular_Response_of_Arabidopsis_thaliana_L_to_Nanoparticle_Cerium_and_Indium_Oxide_Exposure [13] MAJUMDAR S, PERALTA-VIDEA J R, BANDYOPADHYAY S, et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J]. Journal of Hazardous Materials, 2014, 278:279-287. doi: 10.1016/j.jhazmat.2014.06.009 [14] LIMBACH L K, LI Y, GRASS R N, et al.Oxide nanoparticle uptake in human lung fibroblasts:effects of particle size, agglomeration, and diffusion at low concentrations[J]. Environmental Science & Technology, 2005, 39(23):9370-9376. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16382966 [15] WYTTENBACH A, FURRER V, SCHLEPPI P, et al.Rare earth elements in soil and in soil-grown plants[J]. Plant and Soil, 1998, 199(2):267-273. doi: 10.1023/A:1004331826160 [16] YANG KXING B.Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4):1095-1100. doi: 10.1016/j.envpol.2008.11.007