Microbial Diversity and Community Structure in Soil under Tea Bushes-Ganoderma lucidum Intercropping
-
摘要:
目的 探讨茶园间作灵芝对土壤细菌多样性和群落结构的影响,为茶菌间作模式的应用提供科学依据。 方法 应用高通量测序技术分析比较了间作灵芝茶园与单作茶园之间土壤细菌群落变化。 结果 与单作茶园(CK)相比,间作灵芝茶园土壤的有机质、全氮、速效氮和有效磷含量显著提高,速效钾含量和pH显著降低,而全磷和全钾含量变化不显著。间作灵芝茶园处理的土壤细菌群落丰度指数和多样性指数与单作茶园相比无显著性差异。与单作茶园相比,间作灵芝茶园土壤的变形菌门相对丰度显著提高21.18%,而酸杆菌门和芽单胞菌门的相对丰度显著降低15.09%和53.52%,其他细菌门类变化不显著。在属水平上,间作灵芝处理显著提高了土壤有益微生物菌群伯克氏菌属Burkholderia、鞘氨醇单胞菌属Sphingomonas和戴氏菌属Dyella的相对丰度。相关性分析表明,土壤pH、全氮、全磷和速效钾对优势细菌群落的影响较大。 结论 茶园间作灵芝改变了土壤细菌群落结构并提高了土壤中有益微生物菌群的相对丰度,但对土壤细菌群落多样性的影响不明显。 Abstract:Objective Effects of intercropping Ganoderma lucidum among tea bushes on the microbial diversity and community structure in the soil were investigated. Method The microbial communities in the monoculture (CK) and tea bush-G. lucidum intercropping soils were compared using the high-throughput sequencing technology. Result Compared with CK, the intercropping significantly increased the organic matters, total nitrogen, alkali-hydrolyzed nitrogen, and available phosphorus and significantly reduced the available potassium and pH with no significant effect on the total phosphorus and total potassium in the soil. No significant differences were observed on the richness and diversity indices between them. Furthermore, the relative abundance of Proteobacteria in the intercropping soil significantly increased by 21.18% over CK, while that of Acidobacteria declined by 15.09% and that of Gemmatimonadetes by 53.52%, as none found on those of other bacterial phyla. On genus level, the intercropping significantly increased the relative abundance of beneficial microorganisms, such as, Burkholderia, Sphingomonas and Dyella, in the soil. A correlation analysis showed that the pH, total nitrogen, total phosphorus, and available potassium in soil exerted a greater effect on the dominant than the minor bacterial communities. Conclusion By intercropping G. lucidum among tea bushes, the structure of microbial community in the soil was altered with an increased abundance of beneficial microbial species without significant changes on diversity. -
图 4 茶园单作和间作灵芝土壤中优势细菌属相对丰度
注:A为伯克氏菌属Burkholderia,B为气单胞菌属Aeromonas,C为不动杆菌属Acidibacter,D为热酸菌属Acidothermus,E为Phenyolbacterium,F为Candidatus Solibacter,G为Granulicella,H为Bryobacter,I为Salmonella,J为根微杆菌属Rhizomicrobium,K为Escherichia shigella,L为Haliangium,M为堆囊菌属Sorangium,N为unidentified OPB35 soil group,O为北里孢菌属Kitasatospora,P为柯克斯体属Aquicella,Q为Reyranella,R为Chthoniobacter,S为鞘氨醇单胞菌属Sphingomonas,T为戴氏菌属Dyella。*表示处理间差异显著(P<0.05),**表示处理间差异极显著(P<0.01)。
Figure 4. Relative abundance of dominant bacterial genera in monoculture and tea bushes-G. lucidum intercropping soils
Note:* indicates significant differences among treatments (P < 0.05), ** indicates significant differences among treatments (P < 0.01).
表 1 茶园单作和间作灵芝处理的土壤化学性质
Table 1. Chemical properties of monoculture and tea bushes-G. lucidum intercropping soils
处理
Treatments单作茶园
Monoculture茶园间作灵芝
Tea-Ganoderma lucidum intercroppingpH 4.90a 4.23b 有机质Organic matter/(g·kg-1) 28.03b 53.90a 全氮Total nitrogen/(g·kg-1) 1.21b 2.07a 全磷Total phosphorus/(g·kg-1) 0.25a 0.39a 全钾Total potassium/(g·kg-1) 5.38a 5.39a 速效氮Alkali-hydrolyzed nitrogen/(mg·kg-1) 133.80b 204.30a 有效磷Available phosphorus/(mg·kg-1) 10.33b 49.57a 速效钾Available potassium/(mg·kg-1) 147.33a 93.33b 注:同行不同小写字母表示处理间差异显著(P<0.05)。
Note:The different lowercase letters in a row indicate significant differences among treatments at P<0.05.表 2 茶园单作和间作灵芝处理的细菌群落丰度与多样性指数
Table 2. Microbial community richness and diversity indices in monoculture and tea bushes-G. lucidum intercropping soils
处理
Treatments单作茶园
Monoculture茶园间作灵芝
Tea-Ganoderma lucidum intercropping物种数Observed species 2119a 2309a 香农指数Shannon index 9.12a 9.12a 辛普森指数Simpson index 0.99a 0.99a Chao 1指数Chao 1 index 2328.43a 3083.72a 菌群丰度指数ACE 2365.51a 2713.73a 覆盖率Coverage/% 99.20a 98.90a 注:同行不同小写字母表示处理间差异显著(P<0.05)。
Note:The different lowercase letters in a row indicate significant differences among treatments at P<0.05.表 3 优势细菌门与土壤理化性质相关关系
Table 3. Correlation between chemical characteristics and bacterial phyla
细菌门
Bacterial phylapH 有机质
Organic matter全氮
Total nitrogen全磷
Total phosphorus全钾
Total potassium碱解氮
Alkali-hydrolyzed nitrogen有效磷
Available phosphorus速效钾
Available potassium变形菌门Proteobacteria -0.93* 0.77 0.93* 0.60 0.26 0.77 0.77 -0.83 酸杆菌门Acidobacteria 0.81 -0.77 -0.90* -0.43 -0.09 -0.77 -0.60 0.89* 放线菌门Actinobacteria 0.55 -0.66 -0.49 0.37 0.60 -0.66 -0.49 -0.09 绿弯菌门Chloroflexi 0.03 0.03 -0.14 -0.14 -0.26 0.03 0.37 -0.26 拟杆菌门Bacteroidetes 0.03 0.09 0.06 -0.26 0.09 0.09 -0.09 0.54 浮霉菌门Planctomycetes 0.67 -0.43 -0.70 -0.83 -0.60 -0.43 -0.49 0.83 疣微菌门Verrucomicrobia 0.38 -0.09 -0.35 -0.89* -0.77 -0.09 -0.37 0.71 厚壁菌门Firmicutes 0.20 -0.49 -0.32 0.37 0.03 -0.49 -0.49 -0.09 芽单胞菌门Gemmatimonadetes 0.64 -0.66 -0.58 -0.14 0.20 -0.66 -0.83 0.77 WD272 0.43 -0.20 -0.31 -0.29 -0.12 -0.20 -0.20 -0.12 -
[1] 中国茶叶流通协会. 2014年中国茶叶产销报告及2015年形势预测[J].茶世界, 2015(6):50-59. http://www.cqvip.com/QK/89804X/201506/67748888504849534854484955.htmlChina Tea Marketing Association. China tea production and sales report in 2014 and situation forecast in 2015[J]. Tea World, 2015, (6):50-59. (in Chinese) http://www.cqvip.com/QK/89804X/201506/67748888504849534854484955.html [2] 廖万有, 王宏树, 苏有键, 等.我国茶园土壤的退化问题及其防治[C]//茶叶科技创新与产业发展学术研讨会论文集.2009: 185-193.LIAO W Y, WANG H S, SU Y J, et al. Soil degradation of tea plantation in China and its control[C]//Proceedings of the symposium on technological innovation and industrial development of tea. 2009: 185-193. (in Chinese) [3] 林生, 庄家强, 陈婷, 等.不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J].生态学杂志, 2013, 32(1):64-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201301011LIN S, ZHUANG J Q, CHEN T, et al. Microbial diversity in rhizosphere soils of different planting year tea trees:An analysis with phospholipid fatty acid biomarkers[J]. Chinese Journal of Ecology, 2013, 32(1):64-71. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201301011 [4] LI Y, LI Z, LI Z W, et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121:787-799. doi: 10.1111/jam.13225 [5] 黄伟.浅论食用菌返生态野生栽培[J].中国食用菌, 2008, 27(5):33-34. doi: 10.3969/j.issn.1003-8310.2008.05.010HUANG W. Superficial view on ecological wild cultivation of edible fungi[J]. Edible Fungi of China, 2008, 27(5):33-34. (in Chinese) doi: 10.3969/j.issn.1003-8310.2008.05.010 [6] 李振武, 韩海东, 陈敏健, 等.套种食用菌对茶园土壤和茶树生长的效应[J].福建农业学报, 2013, 28(11):1088-1092. doi: 10.3969/j.issn.1008-0384.2013.11.005LI Z W, HAN H D, CHEN M J, et al. Effects of intercropping Stropharia Rugoso-annulata on tea garden soil and tea growth[J]. Fujian Journal of Agricultural Sciences, 2013, 28(11):1088-1092. (in Chinese) doi: 10.3969/j.issn.1008-0384.2013.11.005 [7] 蒋玉兰, 张海华, 潘俊娴, 等.茶树和长根菇间作试验研究[J].中国食用菌, 2018, 37(6):32-35, 39. http://d.old.wanfangdata.com.cn/Periodical/zgsyj201806007JIANG Y L, ZHANG H H, PAN J X, et al. Experiment study on intercropping of tea trees and Oudemansiella radicata[J]. Edible Fungi of China, 2018, 37(6):32-35, 39. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgsyj201806007 [8] 杨洪姣, 马剑, 王睿芳.茶菌间作共生对大叶茶产量的影响研究[J].农技服务, 2017, 34(2):12-14. doi: 10.3969/j.issn.1004-8421.2017.02.006YANG H J, MA J, WANG R F, et al. Effects of intercropping between tea and edible fungi on the yield of large leaf tea[J]. Agricultural technology service, 2017, 34(2):12-14. (in Chinese) doi: 10.3969/j.issn.1004-8421.2017.02.006 [9] 杨云丽, 马剑, 王睿芳.茶菌间作模式对大叶茶土壤微生物类群的影响探析[J].南方农业, 2017, 11(2):13-16. http://d.old.wanfangdata.com.cn/Periodical/nfny201702007YANG Y L, MA J, WANG R F. Effects of tea-edible fungi intercropping on soil microbial groups of large leaf tea[J]. South China Agriculture, 2017, 11(2):13-16. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nfny201702007 [10] 林忠宁, 刘明香, 李振武, 等.茶园套种对灵芝生长和品质的影响研究[C]//第六届全国农业环境科学学术研讨会论文集, 2015: 603-608.LIN Z N, LIU M X, LI Z W, et al. Effects of quality and growth of Ganoderma lucidum inter-planting in tea plantations[C]//The 6th National Conference of Agro-Environment Science, 2015: 603-608. (in Chinese) [11] 秦楠, 栗东芳, 杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报, 201l, 51(4):445-457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxb201104003QIN N, LI D F, YANG R F. Next-generation sequencing technologies and the application in microbiology(A review[J]. Acta Microbiologica Sinica, 201l, 51(4):445-457. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxb201104003 [12] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3):626-631. doi: 10.1073/pnas.0507535103 [13] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.LU R K. Methods of Soil and Agricultural Chemistry Analysis[M]. Beijing:China Agricultural Science and Technology Press, 2000. (in Chinese) [14] YERGEAU E, BOKHORST S, KANG S, et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments[J]. The ISME Journal, 2012, 6(3):692-702. doi: 10.1038/ismej.2011.124 [15] ZHANG B, WU X, ZHANG G, et al. Response of soil bacterial community structure to permafrost degradation in the upstream regions of the Shule River Basin, Qinghai-Tibet Plateau[J]. Geomicrobiology Journal, 2017, 34(4):300-308. doi: 10.1080/01490451.2016.1159768 [16] DION P. Extreme views on prokaryote evolution[M]//Dion P, Nautiyal C S. Microbiology of Extreme Soils. Berlin Heidelberg: Springer, 2008. [17] 刘金光, 李孝刚, 王兴祥.连续施用有机肥对连作花生根际微生物种群和酶活性的影响[J].土壤, 2018, 50(2):305-311. http://d.old.wanfangdata.com.cn/Periodical/tr201802012LIU J G, LI X G, WANG X X. Effects of Successive application of organic fertilizers on rhizosphere microbial populations and enzyme activities of monoculture peanut[J]. Soils, 2018, 50(2):305-311. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tr201802012 [18] PALANIAPPAN P, CHAUHAN P S, SARAVANAN V S, et al. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp.[J]. Biology and Fertility of Soils, 2010, 46(8):807-816. doi: 10.1007/s00374-010-0485-5 [19] 游偲, 张立猛, 计思贵, 等.枯草芽孢杆菌菌剂对烟草根际土壤细菌群落的影响[J].应用生态学报, 2014, 25(11):3323-3330. http://d.old.wanfangdata.com.cn/Periodical/yystxb201411033YOU C, ZHANG L M, JI S G, et al. Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizospheric soil[J]. Chinese Journal of Applied Ecology, 2014, 25(11):3323-3330. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yystxb201411033 [20] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots:The microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11):789-799. doi: 10.1038/nrmicro3109 [21] SALT M, DAVIS K E R, JANSSEN P H. Effect of pH on isolation and distribution of members of subdivision I of the phylum Acidobacteria occurring in soil[J]. Applied and Environmental Microbiology, 2006, 72(3):1852-1857. doi: 10.1128/AEM.72.3.1852-1857.2006 [22] FIERER N, LAUBER C L, RAMIREZ K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5):1007-1017. doi: 10.1038/ismej.2011.159