• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

八仙花NRAT1基因的克隆及表达分析

李志奇 陈海霞

李志奇, 陈海霞. 八仙花NRAT1基因的克隆及表达分析[J]. 福建农业学报, 2019, 34(6): 646-651. doi: 10.19303/j.issn.1008-0384.2019.06.004
引用本文: 李志奇, 陈海霞. 八仙花NRAT1基因的克隆及表达分析[J]. 福建农业学报, 2019, 34(6): 646-651. doi: 10.19303/j.issn.1008-0384.2019.06.004
LI Zhi-qi, CHEN Hai-xia. Expression of NRAT1 Gene in Hydrangea macrophylla Family[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 646-651. doi: 10.19303/j.issn.1008-0384.2019.06.004
Citation: LI Zhi-qi, CHEN Hai-xia. Expression of NRAT1 Gene in Hydrangea macrophylla Family[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 646-651. doi: 10.19303/j.issn.1008-0384.2019.06.004

八仙花NRAT1基因的克隆及表达分析

doi: 10.19303/j.issn.1008-0384.2019.06.004
基金项目: 

湖南省自然科学基金项目 2017JJ3105

详细信息
    作者简介:

    李志奇(1996-), 男, 硕士, 研究方向:八仙花NRAT1基因的抗铝特性(1319931262@qq.com)

    通讯作者:

    陈海霞(1976-), 女, 博士, 副教授, 研究方向:观赏园艺(377817046@qq.com)

  • 中图分类号: S682.3

Expression of NRAT1 Gene in Hydrangea macrophylla Family

  • 摘要:   目的  铝胁迫是酸性土壤中限制植物生长的重要元素,八仙花是一种富集铝的园林观赏植物;本研究对八仙花NRAT1基因进行生物信息学分析及表达分析,以期揭示NRAT1基因在耐铝生理中的作用。  方法  以八仙花品种Hydrangea macrophyllacv laybla为材料,提取RNA进行RT-PCR,检测实时表达情况,克隆NRAT1基因全长并进行生物信息学分析。  结果  试验克隆得到了巨噬基因家族的NRAT1基因全长,该基因有1个1 881 bp的开放阅读框,编码548个氨基酸。多重序列分析表明其具有相当高的保守性,该蛋白有12个跨膜结构,预测位于质膜或液泡膜上,预测结果显示该蛋白是一个疏水性蛋白,试验还分析得到了蛋白质的二、三级结构。RT-PCR试验表明,NRAT1基因在八仙花的根、茎、叶中均有表达,3个组织中NRAT1基因随着处理时间的增加表达量先升后降,在处理2 h表达量达到顶峰,之后维持低水平表达,在12 h之后基因表达被抑制,在根中的平均表达量最高且表达量变化幅度最大。  结论  NRAT1基因在八仙花感受铝胁迫时,表达量立即上调,NRAT1基因参与了八仙花铝离子的吸收和转运,在八仙花铝富集作用中扮演了重要角色。
  • 图  1  NRAT1基因电泳

    注:A为RNA电泳图,B为RACE全长电泳图。

    Figure  1.  Electrophoresis of NRAT1

    Note: A:RNA electrophoresis map, B:RACE full-length electrophoresis map.

    图  2  NRAT1编码蛋白的跨膜结构预测

    Figure  2.  Predicted transmembrane domain of protein encoded by NRAT1

    图  3  NRAT1编码蛋白的亲水性和疏水性预测

    Figure  3.  Hydrophobicity/hydrophilicity prediction on protein encoded by NRAT1

    图  4  NRAT1编码蛋白二级结构预测

    Figure  4.  Predicted secondary structure of protein encoded by NRAT1

    图  5  NRAT1编码蛋白的三级结构分析

    注:A为八仙花(NRAT1),B为粳稻(XP_015647626.1),C为栓皮栎(XP_023908030.1),D为高粱(XP_002459640.1)。

    Figure  5.  Predicted tertiary structure of proteins encoded by NRAT1

    Note: A:Hydrangea macrophylla(NRAT1), B:Oryza sativa (XP_015647626.1), C:Quercus suber(XP_023908030.1), D:Sorghum bicolor(XP_002459640.1).

    图  6  NRAT1基因在根、茎、叶中不同时间的实时表达量

    Figure  6.  Expression of NRAT1 in roots, stems and leaves of H. macrophylla plant at different time

    表  1  八仙花NRAT1基因扩增所用引物

    Table  1.   Primers for amplification of NRAT1 in H. macrophylla

    引物名称
    Primers
    引物序列
    primer sequence
    QPCR-F AGCAACTTTCGAAGGGACTA
    QPCR-R GATACTGAGATCACTGCCACA
    PCR-F ATGGCCAGTCTGCAGCAACAAC
    PCR-R CTATTCGGGTAATGGTATATCCGCC
    RACE-F GGCAAAGAAACGCCCATCGAGAAG
    RACE-R GACTACGCTGACAAGCCTGGATTGG
    下载: 导出CSV
  • [1] 李晶, 谢成建, 玉永雄, 等.植物耐铝机制研究进展[J].江苏农业科学, 2016, 44(12):16-21. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201612004

    LI J, XIE C J, WANG Y X, et al. Research progress on the mechanism of plant aluminum tolerance[J].Jiangsu Agricultural Science, 2016, 44(12):16-21.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsnykx201612004
    [2] 刘强, 郑绍建, 林咸永.植物适应铝毒胁迫的生理及分子生物学机理[J].应用生态学报, 2004, 15(9):1641-1649 doi: 10.3321/j.issn:1001-9332.2004.09.031

    LIU Q, ZHENG S J, LIN X Y. Physiological and molecular biological mechanisms of plant adaptation to aluminum stress[J]. Chinese Journal of Applied ecology, 2004, 15(9):1641-1649.(in Chinese) doi: 10.3321/j.issn:1001-9332.2004.09.031
    [3] 陈海霞, 胡春梅, 彭尽晖, 等, 铝胁迫诱导八仙花根系分泌有机酸的研究[J].天津农业科学, 2017, 23(2):1-7, 15. doi: 10.3969/j.issn.1006-6500.2017.02.001

    CHEN H X, HU C M, PENG J H, et al. Study on the induction of organic acid secretion from the root system of Hydrangea japonica under aluminum stress[J]. Tianjin Agricultural Science, 2017, 23(2):1-7, 15.(in Chinese) doi: 10.3969/j.issn.1006-6500.2017.02.001
    [4] CHEN H X, LU C P, JIANG H, et al.Global transcriptome analysis reveals distinct aluminum-tolerance mechanisms in the AL-accumulating species Hydrangea macrophylla and marker identification[J].PLoS One, 2015, 10(12):e0144927. doi: 10.1371/journal.pone.0144927
    [5] 李交昆, 唐璐璐.植物抗铝分子机制研究进展[J].生命科学, 2013(6):588-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkx201306008

    LI J K, TANG L L. Research progress on molecular mechanism of plant resistance to aluminum[J]. Life Science, 2013(6):588-594.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkx201306008
    [6] XIA J, YAMAJI N, KASAI T, et al. Plasma membrane localized transporter for aluminum in rice[J]. Proc Natl Acad Sci USA, 2010, 107(43):18381-18385. doi: 10.1073/pnas.1004949107
    [7] 杨猛.水稻NRAMP家族基因在Mn和Cd转运中的功能研究[D].武汉: 华中农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10504-1015391869.htm

    YANG M. Functional studies of NRAMP family genes in Mn and Cd transport in rice[D].Wuhan: Huazhong Agricultural University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10504-1015391869.htm
    [8] 尹华.莱茵衣藻重金属转运蛋白NRAMP1的鉴定与功能解析[D].重庆: 西南大学, 2018.

    YIN H. Identification and functional analysis of the heavy metal transporter NRAMP1 in chlamydomonas reinhardtii[D].Chongqing: Southwest university, 2018.(in Chinese)
    [9] 肖海华, 印莉萍, 韩振海.苹果属山荆子MbNramp1基因克隆、序列与表达分析[J].园艺学报, 2010, 37(9):1409-1415. http://www.cnki.com.cn/Article/CJFDTotal-YYXB201009007.htm

    XIAO H H, YIN L P, HAN Z H. Cloning, sequence and expression of MbNramp1 gene in jingzi of apple[J]. Acta Horticulturae Sinica, 2010, 37(9):1409-1415.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YYXB201009007.htm
    [10] 焦芳婵, 李文正, 吴玉萍, 等.烟草NtNramp1-1基因克隆及特征分析[J].分子植物育种, 2015(11):2510-2515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201511015

    JIAO F C, LI W Z, WU Y P, et al. Cloning and characteristic analysis of ntnramp1-1 gene in tobacco[J].Molecular Plant Breeding, 2015(11):2510-2515.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201511015
    [11] 刘晓敏.丹东蒲公英NRAMP基因克隆及功能鉴定[D].沈阳: 沈阳农业大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993368.htm

    LIU X M. Cloning and functional identification of NRAMP gene in dandelion[D]. Shenyang: Shenyang Agricultural University, 2018.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993368.htm
    [12] TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 14(14):4843-4850. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86991c6ead19badaac4dd8abe45d1e2e
    [13] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 5(5):2155-2167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a40d3f2d49207982a0807ab00b4730c
    [14] CAILLIATTE R, LAPEYRE B, BRIAT J F, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. The Biochemical Journal, 2009, 422(2):217-228. doi: 10.1042/BJ20090655
    [15] RÉMY C, ADAMS, JEAN-FRANC'OISB, et al. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions[J]. The Plant Cell, 2010, 22:904-917. doi: 10.1105/tpc.109.073023
    [16] WEI W, CHAI T Y, ZHANG Y X, et al. The Thlaspi caerulescens NRAMP Homologue TcNRAMP3 is Capable of Divalent Cation Transport[J]. Molecular biotechnology, 2009, 41(1):15-21. doi: 10.1007/s12033-008-9088-x
    [17] CURIE C, LE JEAN M, ECKER J R, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal, 2000, 347:749-755. doi: 10.1042/bj3470749
    [18] SEBASTIEN T, FRANCOISE L, ELISE D, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal, 2003, 34(5):685-695. doi: 10.1046/j.1365-313X.2003.01760.x
    [19] XIAO H, YIN L, XU X, et al. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking[J]. Annals of Botany, 2008, 102:881-889. doi: 10.1093/aob/mcn178
    [20] MANISH T, DEEPIKA S, SANJAY D, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant, Cell & Environment, 2014, 37(1):140-152. https://www.ncbi.nlm.nih.gov/pubmed/23700971
    [21] LANQUAR V, RAMOS M S, LELIEVRE F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant physiology, 2010, 4(4):1986-1999. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2850043
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1338
  • HTML全文浏览量:  272
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-17
  • 修回日期:  2019-05-26
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回