Expression of NRAT1 Gene in Hydrangea macrophylla Family
-
摘要:
目的 铝胁迫是酸性土壤中限制植物生长的重要元素,八仙花是一种富集铝的园林观赏植物;本研究对八仙花NRAT1基因进行生物信息学分析及表达分析,以期揭示NRAT1基因在耐铝生理中的作用。 方法 以八仙花品种Hydrangea macrophyllacv laybla为材料,提取RNA进行RT-PCR,检测实时表达情况,克隆NRAT1基因全长并进行生物信息学分析。 结果 试验克隆得到了巨噬基因家族的NRAT1基因全长,该基因有1个1 881 bp的开放阅读框,编码548个氨基酸。多重序列分析表明其具有相当高的保守性,该蛋白有12个跨膜结构,预测位于质膜或液泡膜上,预测结果显示该蛋白是一个疏水性蛋白,试验还分析得到了蛋白质的二、三级结构。RT-PCR试验表明,NRAT1基因在八仙花的根、茎、叶中均有表达,3个组织中NRAT1基因随着处理时间的增加表达量先升后降,在处理2 h表达量达到顶峰,之后维持低水平表达,在12 h之后基因表达被抑制,在根中的平均表达量最高且表达量变化幅度最大。 结论 NRAT1基因在八仙花感受铝胁迫时,表达量立即上调,NRAT1基因参与了八仙花铝离子的吸收和转运,在八仙花铝富集作用中扮演了重要角色。 Abstract:Objective Bioinformatics and expression of NRAT1 gene of the ornamental Hydrangea macrophylla plants that tend to accumulate aluminum (Al), a growth-limiting heavy metal in acidic soil, were studied to understand the physiology of the plant on Al-tolerance. Method The RNA of H. medalensis cv. Laybla was extracted for RT-PCR to detect the real-time expression and cloned for bioinformatic analysis to determine the molecular structure of NRAT1. Result The cloned macrophage gene obtained in the lab revealed that the gene had a 1 881 bp open reading frame and encoded 548 amino acids. A multiple sequence analysis showed it to be highly conservative with 12 transmembrane structures located on the plasma or vacuole membrane. The secondary and tertiary structures of the hydrophobic protein were obtained. RT-PCR indicated that NRAT1 was expressed in the roots, stems and leaves of H. macrophylla, and the expressions increased initially to peak in 2h followed by a decline with time to a levered low level. After 12h under Al-stress, the expression was completely inhibited. Among the three issues, the roots had the highest expression and were affected the most by the stress. Conclusion The NRAT1 gene expression was up-regulated in Hydrangea macrophylla immediately upon the exposure to Al. The gene was positively confirmed to participate in the absorption and transport of Al ions playing an important role in the heavy metal accumulation in the plants. -
Key words:
- Hydrangea macrophylla /
- NRAT1 gene /
- Aluminum stress /
- expression analysis
-
图 5 NRAT1编码蛋白的三级结构分析
注:A为八仙花(NRAT1),B为粳稻(XP_015647626.1),C为栓皮栎(XP_023908030.1),D为高粱(XP_002459640.1)。
Figure 5. Predicted tertiary structure of proteins encoded by NRAT1
Note: A:Hydrangea macrophylla(NRAT1), B:Oryza sativa (XP_015647626.1), C:Quercus suber(XP_023908030.1), D:Sorghum bicolor(XP_002459640.1).
表 1 八仙花NRAT1基因扩增所用引物
Table 1. Primers for amplification of NRAT1 in H. macrophylla
引物名称
Primers引物序列
primer sequenceQPCR-F AGCAACTTTCGAAGGGACTA QPCR-R GATACTGAGATCACTGCCACA PCR-F ATGGCCAGTCTGCAGCAACAAC PCR-R CTATTCGGGTAATGGTATATCCGCC RACE-F GGCAAAGAAACGCCCATCGAGAAG RACE-R GACTACGCTGACAAGCCTGGATTGG -
[1] 李晶, 谢成建, 玉永雄, 等.植物耐铝机制研究进展[J].江苏农业科学, 2016, 44(12):16-21. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201612004LI J, XIE C J, WANG Y X, et al. Research progress on the mechanism of plant aluminum tolerance[J].Jiangsu Agricultural Science, 2016, 44(12):16-21.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsnykx201612004 [2] 刘强, 郑绍建, 林咸永.植物适应铝毒胁迫的生理及分子生物学机理[J].应用生态学报, 2004, 15(9):1641-1649 doi: 10.3321/j.issn:1001-9332.2004.09.031LIU Q, ZHENG S J, LIN X Y. Physiological and molecular biological mechanisms of plant adaptation to aluminum stress[J]. Chinese Journal of Applied ecology, 2004, 15(9):1641-1649.(in Chinese) doi: 10.3321/j.issn:1001-9332.2004.09.031 [3] 陈海霞, 胡春梅, 彭尽晖, 等, 铝胁迫诱导八仙花根系分泌有机酸的研究[J].天津农业科学, 2017, 23(2):1-7, 15. doi: 10.3969/j.issn.1006-6500.2017.02.001CHEN H X, HU C M, PENG J H, et al. Study on the induction of organic acid secretion from the root system of Hydrangea japonica under aluminum stress[J]. Tianjin Agricultural Science, 2017, 23(2):1-7, 15.(in Chinese) doi: 10.3969/j.issn.1006-6500.2017.02.001 [4] CHEN H X, LU C P, JIANG H, et al.Global transcriptome analysis reveals distinct aluminum-tolerance mechanisms in the AL-accumulating species Hydrangea macrophylla and marker identification[J].PLoS One, 2015, 10(12):e0144927. doi: 10.1371/journal.pone.0144927 [5] 李交昆, 唐璐璐.植物抗铝分子机制研究进展[J].生命科学, 2013(6):588-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkx201306008LI J K, TANG L L. Research progress on molecular mechanism of plant resistance to aluminum[J]. Life Science, 2013(6):588-594.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkx201306008 [6] XIA J, YAMAJI N, KASAI T, et al. Plasma membrane localized transporter for aluminum in rice[J]. Proc Natl Acad Sci USA, 2010, 107(43):18381-18385. doi: 10.1073/pnas.1004949107 [7] 杨猛.水稻NRAMP家族基因在Mn和Cd转运中的功能研究[D].武汉: 华中农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10504-1015391869.htmYANG M. Functional studies of NRAMP family genes in Mn and Cd transport in rice[D].Wuhan: Huazhong Agricultural University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10504-1015391869.htm [8] 尹华.莱茵衣藻重金属转运蛋白NRAMP1的鉴定与功能解析[D].重庆: 西南大学, 2018.YIN H. Identification and functional analysis of the heavy metal transporter NRAMP1 in chlamydomonas reinhardtii[D].Chongqing: Southwest university, 2018.(in Chinese) [9] 肖海华, 印莉萍, 韩振海.苹果属山荆子MbNramp1基因克隆、序列与表达分析[J].园艺学报, 2010, 37(9):1409-1415. http://www.cnki.com.cn/Article/CJFDTotal-YYXB201009007.htmXIAO H H, YIN L P, HAN Z H. Cloning, sequence and expression of MbNramp1 gene in jingzi of apple[J]. Acta Horticulturae Sinica, 2010, 37(9):1409-1415.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YYXB201009007.htm [10] 焦芳婵, 李文正, 吴玉萍, 等.烟草NtNramp1-1基因克隆及特征分析[J].分子植物育种, 2015(11):2510-2515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201511015JIAO F C, LI W Z, WU Y P, et al. Cloning and characteristic analysis of ntnramp1-1 gene in tobacco[J].Molecular Plant Breeding, 2015(11):2510-2515.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201511015 [11] 刘晓敏.丹东蒲公英NRAMP基因克隆及功能鉴定[D].沈阳: 沈阳农业大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993368.htmLIU X M. Cloning and functional identification of NRAMP gene in dandelion[D]. Shenyang: Shenyang Agricultural University, 2018.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993368.htm [12] TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 14(14):4843-4850. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86991c6ead19badaac4dd8abe45d1e2e [13] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 5(5):2155-2167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a40d3f2d49207982a0807ab00b4730c [14] CAILLIATTE R, LAPEYRE B, BRIAT J F, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. The Biochemical Journal, 2009, 422(2):217-228. doi: 10.1042/BJ20090655 [15] RÉMY C, ADAMS, JEAN-FRANC'OISB, et al. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions[J]. The Plant Cell, 2010, 22:904-917. doi: 10.1105/tpc.109.073023 [16] WEI W, CHAI T Y, ZHANG Y X, et al. The Thlaspi caerulescens NRAMP Homologue TcNRAMP3 is Capable of Divalent Cation Transport[J]. Molecular biotechnology, 2009, 41(1):15-21. doi: 10.1007/s12033-008-9088-x [17] CURIE C, LE JEAN M, ECKER J R, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal, 2000, 347:749-755. doi: 10.1042/bj3470749 [18] SEBASTIEN T, FRANCOISE L, ELISE D, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal, 2003, 34(5):685-695. doi: 10.1046/j.1365-313X.2003.01760.x [19] XIAO H, YIN L, XU X, et al. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking[J]. Annals of Botany, 2008, 102:881-889. doi: 10.1093/aob/mcn178 [20] MANISH T, DEEPIKA S, SANJAY D, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant, Cell & Environment, 2014, 37(1):140-152. https://www.ncbi.nlm.nih.gov/pubmed/23700971 [21] LANQUAR V, RAMOS M S, LELIEVRE F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant physiology, 2010, 4(4):1986-1999. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2850043