Multi-gene Transformation of Indica Rice, Minghui 86
-
摘要:
目的 探索适合籼稻明恢86多基因遗传转化的条件,为创制含高产、抗逆、抗虫、抗病等基因的水稻新材料奠定基础。 方法 以籼稻明恢86为受体材料,将构建好的含作物高产基因RRM2、耐旱基因HS1、抗除草剂基因EPSPS、抗虫基因Bt、细胞凋亡抑制基因iap和促细胞再生基因p35等多基因载体(载体分别命名为P5和P8)进行遗传转化。在此基础上,分别对多基因遗传转化体系的受体材料、农杆菌浓度、侵染时间、共培养方式、G418筛选浓度和草甘膦筛选浓度等主要影响因素进行试验,探讨其适宜的转化条件。 结果 受体材料的筛选结果表明,幼胚的出愈率显著高于成熟胚,且其愈伤组织状态相对较好;各转化条件的筛选结果,农杆菌侵染浓度OD600为0.4~0.6、侵染时间15~20 min、共培养2~3 d、培养基上添加无菌滤纸、G418筛选浓度150 mg·L-1和草甘膦筛选浓度800 mg·L-1是提高转化效率的优化条件;PCR分析结果,多基因载体P5中的GUS基因成功转入籼稻明恢86。 结论 通过对培养条件的优化,可使籼稻明恢86愈伤组织的诱导愈伤率和抗性愈伤率得到显著提高。 Abstract:Objective Conditions for simultaneous transformation of multiple genes in Indica rice, Minghui 86, were studied to facilitate the development of high yield and resistant breeds. Method Two multi-gene vectors designated as P5 and P8 that harbored the high-yield RRM2, drought-tolerant HS1, herbicide-resistant EPSPS, and insect-resistant Bt as well as the apoptosis-inhibiting iap and gene that promotes cell regeneration p35 were transformed to the receptor Minghui 86 using agrobacterium-based transformation methodology. The receptor, callus culture, agrobacterium concentration, infection time, co-culture, and screening concentrations of G418 and glyphosate were evaluated for the selection. Result Under same culture conditions, the recovery rate of Minghui 86 immature embryos was significantly higher with a better callus quality than that of the mature embryos. The optimal transformation conditions were determinated to be a bacterial concentration of OD600=0.4-0.6, an infection time of 15-20 m, co-culture for 2-3 d with the addition of sterile filter paper in medium, and the screening concentration of G418 at 150 mg·L-1 and of glyphosate at 800 mg·L-1. The PCR detection confirmed that GUS in the polygenic vector P5 was successfully transferred into Indica cv. Minghui 86. Conclusion The optimized culture conditions afforded significantly improved callus and resistance induction rates in Minghui 86. -
Key words:
- gene /
- genetic transformation /
- indica rice /
- Minghui 86
-
表 1 农杆菌浓度对转化效率的影响
Table 1. Transformation rate affected by agrobacterium screening concentration
农杆菌浓度(OD600值)
Agrobacterium concentration抗性愈伤组织数
No. of resistance callus (Mean±SD)抗性愈伤组织率
Resistance callus induction rate/% (Mean±SD)愈伤组织生长状态
Callus grow status0.20 9.33±1.15dD 23.33±2.89dD 无农杆菌No visible bacteria colony 0.40 24.00±2.00bB 60.00±5.00bB 无农杆菌No visible bacteria colony 0.60 30.00±2.00aA 75.00±5.00aA 少量农杆菌Few visible bacteria colonies 0.80 17.33±1.15cC 43.33±2.89cC 大量农杆菌Many visible bacteria colonies 注:表中同列数值后无相同小、大写字母者分别表示处理间差异达显著(P < 0.05)或极显著(P < 0.01)水平。表 2~4同。
Note:Different lowercase letters after the value indicate significant difference (P < 0.01).The same as Table 2-4.表 2 不同侵染时间对抗性愈伤率的影响
Table 2. Effect of infecting time on antagonistic callus rate
侵染时间
Infectiontime /min抗性愈伤数
No. of resistance callus (Mean±SD)抗性愈伤率
Resistance callus induction rate/% (Mean±SD)愈伤生长状态
Callus grow status5 3.33±0.58dD 16.67±2.89dD 无褐化No browning 10 6.67±1.53cdCD 33.33±7.64cdCD 少量褐化Slighty browning 15 11.67±1.53aA 58.33±7.64aA 边缘,顶部褐化Browning at the margin and top 20 12.33±1.53aA 61.67±7.64aA 边缘,顶部褐化Browning at the margin and top 25 10.33±1.15abAB 51.67±5.77abAB 褐化严重Severely Browning 30 7.33±0.58bcBC 36.67±2.89bcBC 褐化严重Severely Browning 表 3 共培养方式的转化效果
Table 3. Transformation effect of co-culture
共培养方式
Co-cultivation method愈伤数
No. of callus抗性愈伤数
No. of resistance callus (Mean±SD)抗性愈伤率
Resistance callus induction rate/% (Mean±SD)愈伤生长状态
Callus grow status不加滤纸
Without filter paper40 17.66±2.52bB 44.33±6.03bB 生长慢,易褐化
Growing slowly and prone to browning加滤纸
With filter paper40 30.33±2.52aA 76.00±6.56aA 生长快,褐化慢
Growing fast and resistant to Browning表 4 共培养时间对抗性愈伤率的影响
Table 4. Effect of co-culture time on callus resistance
共培养时间
Co-culture time/d侵染愈伤数
Number of contaminated calli (Mean)抗性愈伤数
Number of resistant calli (Mean)抗性愈伤率
Frequency of resistant calli/% (Mean±SD)愈伤生长状态
Callus grow status1 56.67 20.33 35.96±1.10dD 无农杆菌
No visible bacteria colony2 70.33 54.33 77.26±1.07bB 底部偶见少量农杆菌
Occasionally bacteria colony at the bottom3 72.67 60.00 82.67±1.15aA 底部有明显农杆菌
Visible bacteria colony at the bottom4 58.33 39.33 67.33±1..53cC 大量农杆菌包裹
Covered with bacteria -
[1] 王维旭, 张骥诚, 刘学群, 等.籼稻品种Kasalath遗传转化条件的研究[J].安徽农业科学, 2010, 38(4):1735-1737, 1856. doi: 10.3969/j.issn.0517-6611.2010.04.031WANG W X, ZHANG J C, LIU X Q, et al.Study on the Factors of Genetic Transformation for Indica Rice Kasalath[J]. Journal of Anhui Agri.Sci.2010, 38(4):1735-1737, 1856. (in Chinese) doi: 10.3969/j.issn.0517-6611.2010.04.031 [2] 柳红.籼稻高效遗传转化体系的建立[D].福州: 福建农林大学, 2009: 1-75. http://cdmd.cnki.com.cn/Article/CDMD-10389-2009170697.htmLIU H.Establishment of Indica efficient genetic transformationsystem[D].Fuzhou: Fujian Agriculture and Forestry University, 2009: 1-75. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10389-2009170697.htm [3] 向阳, 赵德刚, 朱冬雪, 等.籼稻成熟胚愈伤组织诱导及不定芽分化[J].山地农业生物学报, 2004, 23(3):193-197. doi: 10.3969/j.issn.1008-0457.2004.03.002XIANG Y, ZHAO D G, ZHU D X, et al.Indica rice matureembryo callus induction and adventitious bud differentiation[J].J Mountain Agric Biol, 2004, 23(3):193-197. (in Chinese) doi: 10.3969/j.issn.1008-0457.2004.03.002 [4] BABA A, HASEZAWA S, SYONO K, et al. Cultivation of riceprotoplasts and their transformation mediated by Agrobacterium spheroplasts[J]. Plant Cell Physiol, 1986, 27:463-468. [5] HIEI Y, OHTA S, KOMARI T, et al. Efficient transformation of rice (Oryza sativa L.). mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994(6):271-282. [6] CHENG X, SARDANA R, KAPLAN H, et al.Agrobacterium-transformed rice plants expressing syntheticcryIA(a) and cry IA(c) genes are highly toxic to striped stem borer and yellow stem borer[J]. Proc Natl Acad Sci USA, 1998, 95:2767-2772. doi: 10.1073/pnas.95.6.2767 [7] 项友斌, 梁竹青, 高明尉, 等.农杆菌介导的苏云金杆菌抗虫因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达[J].生物工程学报, 1999, 15(4):494-500. doi: 10.3321/j.issn:1000-3061.1999.04.015XIANG Y B, LIANG Z Q, GAO M W, et al.Agrobacterium mediated Transformation of Insecticidal BacillusthuringiensiscryIA(b) and cryIA(c) Genes and Their Expression in Rice Chinese Journal of Biotechnology[J]. Journal of Bioengineering, 1999, 15(4):494-500. (in Chinese) doi: 10.3321/j.issn:1000-3061.1999.04.015 [8] CHEN L, MARMEY P, TAYLOR N J, et al. Expression and inheritance of multiple transgenes in rice plants[J]. Nature Biotechnology, 1998, 16:1060-1064. doi: 10.1038/3511 [9] 冯道荣, 许新萍, 邱国华, 等.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报, 2000, 45(15):1593-1599. doi: 10.3321/j.issn:0023-074X.2000.15.004FENG D R, XU X P, QIU G H, et al.Inheritance and expression of multiple disease resistance and insect resistance genes in rice[J].Chinese Science Bulletin, 2000, 45(15):1593-1599. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.15.004 [10] YE X, AL-BABILI S, KLOTI A, et al. Engineering the provitamin A (β-Carotene)biosynthetic pathway into (Carotenoid-free) rice endosperm[J].Science, 2000, 287:303-305. doi: 10.1126/science.287.5451.303 [11] 李宝健, 朱华晨.论应用多基因转化策略综合改良生物体遗传性研究方向的前景[J].中山大学学报, 2005, 44(4):79-83. doi: 10.3321/j.issn:0529-6579.2005.04.021LI B J, ZHU H C.Prospects for the application of multi-gene transformation strategies to comprehensively improve the genetic research direction of organisms[J].Journal of Sun Yat-sen University, 2005, 44(4):79-83. (in Chinese) doi: 10.3321/j.issn:0529-6579.2005.04.021 [12] 王慧中, 黄大年, 鲁瑞芳.转mt1D/gutD双价基因水稻的耐盐性[J].科学通报, 2000, 45(7):724-728. doi: 10.3321/j.issn:0023-074X.2000.07.012WANG H Z, HUANG D N, LU R F.Salt tolerance of transgenic rice with mt1D/gutD[J].Chinese Science Bulletin, 2000, 45(7):724-728. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.07.012 [13] 朱永兴, 曹鹏, 许兴, 等.多基因表达载体KCTB转化宁夏枸杞的研究[J].中国科学通报, 2010, 26(9):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201009014ZHU Y X, CAO P, XU X, et al.The Transformation of Multigene Expressed Vector for Lyciumbarbarum L.[J].Chinese Agricultural Science Bulletin, 2010, 26(9):74-77. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201009014 [14] 朱丽, 傅亚萍, 刘文真, 等.利用共转化和花药培养技术快速获得无选择标记的三价转基因水稻[J].中国水稻科学, 2007, 21(5):475-481. doi: 10.3321/j.issn:1001-7216.2007.05.006ZHU L, FU Y P, LIU W Z, et al.Rapidly obtaining trivalent transgenic rice without selection marker by co-transformation and anther culture techniques[J].Chinese Rice Science, 2007, 21(5):475-481. (in Chinese) doi: 10.3321/j.issn:1001-7216.2007.05.006 [15] CAO M X, HUANG J Q, WEI Z M, et al. Agrobacterium-mediated multiple-gene transformation in rice using a single vector[J]. J IntegrPlantBiol, 2005, 47(2):233-242. [16] NAQVI S, FARRE G, SANAHUJA G, et al.When more is better:multigene engineering in plants[J].Trends Plant Sci, 2010, 15(1):48-56. doi: 10.1016/j.tplants.2009.09.010 [17] 凌键, 陈永文, 龚一富, 等.甘薯离体遗传转化体系的优化[J].西南师范大学学报(自然科学版), 2004, 29(3):466-470. doi: 10.3969/j.issn.1000-5471.2004.03.032LING J, CHEN Y W, GONG Y F, et al.Optimization of system for in vitro genetic transformation in sweetpotato[J].Journal of Southwest China Normal University (Natural Science Edition), 2004, 29(3):466-470. (in Chinese) doi: 10.3969/j.issn.1000-5471.2004.03.032 [18] 陈明利, 刘香利, 唐广立, 等.农杆菌侵染小麦的优化方案[J].分子植物育种, 2007, 5(4):577-582. doi: 10.3969/j.issn.1672-416X.2007.04.022CHEN M L, LIU X L, TANG G L, et al.Optimization of Agrobacterium infecting Wheat[J].Molecular plant breeding, 2007, 5(4):577-582. (in Chinese) doi: 10.3969/j.issn.1672-416X.2007.04.022 [19] 奚亚军, 张启发, 林拥军, 等.利用农杆菌浸种法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究[J].中国农业科学, 2004, 37(8):1235-1238. doi: 10.3321/j.issn:0578-1752.2004.08.027XI Y J, ZHANG Q F, LIN Y J, et al.Introduction of Leaf Aging Inhibitory Gene PSAG12-IPT into Common Wheat by Agrobacterium Soaking[J].Chinese Agricultural Science, 2004, 37(8):1235-1238. (in Chinese) doi: 10.3321/j.issn:0578-1752.2004.08.027 [20] 雷江丽, 王丹, 吴燕民, 等.农杆菌浸种法介导中华结缕草遗传转化体系的建立[J].农业生物技术学报, 2009, 17(5):865-871. doi: 10.3969/j.issn.1674-7968.2009.05.021LEI J L, WANG D, WU Y M, et al.Agrobacterium tumefaciens seed soaking method mediates the establishment of genetic transformation system of Zoysia japonica[J].Journal of Agricultural Biotechnology, 2009, 17(5):865-871. (in Chinese) doi: 10.3969/j.issn.1674-7968.2009.05.021 [21] 田文忠.提高籼稻愈伤组织再生频率的研究[J].遗传学报, 1994, 3(5):27-31. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201133001TIAN W Z.Study on the Improve of Regeneration Frequency of Mature Embryo-derived indica Rice Callus[J].J Genet Genom, 1994, 3(5):27-31. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201133001 [22] CHENG M, HU T, JEAMME L, et al.Desiccation of plant tissue post-Agrobacterium infection enhances T-DNA delivery and in creases stable transformation efficiency in wheat[J].In Vitro Cell Dev Biol Plant, 2003, 39:595-604. doi: 10.1079/IVP2003471 [23] 马艳丽, 叶兴国, 刘艳鹏, 等.农杆菌敏感小麦基因型的筛选研究[J].麦类作物学报, 2005, 25(6):6-10. doi: 10.3969/j.issn.1009-1041.2005.06.002MA Y L, YE X G, LIU Y P, et al. Screening of wheat genotype sensitive to Agrobacterium tumefaciens infection[J].Journal of Triticeae Crops, 2005, 25(6):6-10. (in Chinese) doi: 10.3969/j.issn.1009-1041.2005.06.002 [24] 王文治, 蔡文伟, 冯翠莲, 等.高效快速甘蔗转基因方法探索[J].热带作物学报, 2012, 33(9):1619-1624. doi: 10.3969/j.issn.1000-2561.2012.09.017WANG W Z, CAI W W, FENG C L, et al.Exploring the method of high efficient and rapid sugarcane transgenic[J].Journal of Tropical Crops, 2012, 33(9):1619-1624. (in Chinese) doi: 10.3969/j.issn.1000-2561.2012.09.017 [25] 项友斌, 梁竹青, 高明尉, 等.农杆菌介导的苏云金杆菌抗虫因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达[J].生物工程学报, 1999, 15(4):494-500. doi: 10.3321/j.issn:1000-3061.1999.04.015XIANG Y B, LIANG Z Q, GAO M W, et al.Agrobacterium mediated Transformation of Insecticidal BacillusthuringiensiscryIA (b) and cryIA(c) Genes and Their Expression in Rice[J].Chinese Journal of Biotechnology, 1999, 15(4):494-500. (in Chinese) doi: 10.3321/j.issn:1000-3061.1999.04.015